K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số đó là 36

19 tháng 1 2018

36 nhé

22 tháng 11 2015

dài quá hỏi từng câu thôi nhé

23 tháng 2 2018

Tôi đoán mò ra 132 nhưng làm thế nao ra đc nó giúp tớ nhé cam on cac ban

9 tháng 4 2018

111 nhé

14 tháng 5 2015

Không biết copy lại việc gì phải chép

22 tháng 2 2018

Gọi số cần tìm là X=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯xy...tbanan−1...a1X=xy...tbanan−1...a1¯,b là chữ số cần gạch

Đặt A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯xy...t;Y=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯xy...tanan−1...a1A=xy...t¯;Y=xy...tanan−1...a1¯

Ta có:X=71Y

⇔A×10n+1+b×10n+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯an...a1=71×(A×10n+¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯an...a1)⇔A×10n+1+b×10n+an...a1¯=71×(A×10n+an...a1¯)

⇔b×10n=61A×10n+70¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯an...a1⇔b×10n=61A×10n+70an...a1¯

⇒b×10n>61A×10n⇒b×10n>61A×10n

mà0<b≤90<b≤9

⇒A=0⇒A=0

⇒b×10n=70¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯an...a1⇒b×10n=70an...a1¯

Chữ số bị gạch là chữ số đầu tiên từ trái qua

mà (10n,7)=1(10n,7)=1

⇒b⋮7⇒b⋮7

⇒b=7⇒b=7

Vậy bài toán đã được giải quyết, số cần tìm là X=71000000... (với n-1 số 0, nϵN∗ϵN∗)chữ số bị gạch đi là 7

20 tháng 2 2017

goi so can tim la ABCD 

Ta co ABCD +A+B+C+D =2003

A.1001+B.101+C.11+D.2=2003

ĐẾN ĐÂY BẠN DÙNG CÔNG THỨC TÌM SỐ TỰ NHIÊN SE GIAI DUOC NHE 

1 tháng 11 2019

Cho 20 điểm trong đó có a điểm thẳng hàng (a <20)tìm a biết rằng từ 20 điểm đó ta vẽ được tất cả 170 đường thẳng 

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

Gọi số cần tìm là $A$. Tổng các chữ số của $A$ là $S(A)$.
Vì $A+S(A)=2004$ nên $A$ nhỏ hơn $2004$. Do đó, $A$ nhiều nhất 4 chữ số.

Nếu A có 1 chữ số thì $2A=2004\Rightarrow A=1002$ (vô lý)

Nếu A có 2 chữ số thì $A+S(A)$ lớn nhất bằng $99+9+9=117<2004$ (loại)

Nếu A có 3 chữ số thì $A+S(A)$ lớn nhất bằng $999+9+9+9=1026<2004$ (loại)

Nếu A có 4 chữ số. Gọi $A=\overline{abcd}$. 

Ta có: $\overline{abcd}+a+b+c+d=2004$

$\Leftrightarrow 1001a+101b+11c+2d=2004$

$\Rightarrow 1001a\leq 2004\Rightarrow a\leq 2$

Xét các TH sau:

TH1: $a=1$ thì $101b+11c+2d=1003$

$\Rightarrow 101b=1003-11c-2d\geq 1003-11.9-2.9=886$

$\Rightarrow b\geq 9$

$\Rightarrow b=9$.

$11c+2d=94$

$11c=94-2d\geq 94-2.9=76\Rightarrow c\geq 7$

Mà $c$ chẵn nên $c=8$. Kéo theo $d=3$

TH2: $a=2$ thì $101b+11c+2d=2$

$\Rightarrow b=0; c=0; d=1$

Vậy số cần tìm là $1983$ hoặc $2001$

 

23 tháng 5 2021

Lời giải:

Gọi số cần tìm là AA. Tổng các chữ số của AA là S(A)S(A).
Vì A+S(A)=2004A+S(A)=2004 nên AA nhỏ hơn 20042004. Do đó, AA nhiều nhất 4 chữ số.

Nếu A có 1 chữ số thì 2A=2004⇒A=10022A=2004⇒A=1002 (vô lý)

Nếu A có 2 chữ số thì A+S(A)A+S(A) lớn nhất bằng 99+9+9=117<200499+9+9=117<2004 (loại)

Nếu A có 3 chữ số thì A+S(A)A+S(A) lớn nhất bằng 999+9+9+9=1026<2004999+9+9+9=1026<2004 (loại)

Nếu A có 4 chữ số. Gọi A=¯¯¯¯¯¯¯¯¯¯abcdA=abcd¯

Ta có: ¯¯¯¯¯¯¯¯¯¯abcd+a+b+c+d=2004abcd¯+a+b+c+d=2004

⇔1001a+101b+11c+2d=2004⇔1001a+101b+11c+2d=2004

⇒1001a≤2004⇒a≤2⇒1001a≤2004⇒a≤2

Xét các TH sau:

TH1: a=1a=1 thì 101b+11c+2d=1003101b+11c+2d=1003

⇒101b=1003−11c−2d≥1003−11.9−2.9=886⇒101b=1003−11c−2d≥1003−11.9−2.9=886

⇒b≥9⇒b≥9

⇒b=9⇒b=9.

11c+2d=9411c+2d=94

11c=94−2d≥94−2.9=76⇒c≥711c=94−2d≥94−2.9=76⇒c≥7

Mà cc chẵn nên c=8c=8. Kéo theo d=3d=3

TH2: a=2a=2 thì 101b+11c+2d=2101b+11c+2d=2

⇒b=0;c=0;d=1⇒b=0;c=0;d=1

Vậy số cần tìm là 19831983 hoặc 2001