Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có y ' = x 2 − 2 m − 1 x − m − 3
Để hàm số đồng biến trên các khoảng − 3 ; − 1 và 0 ; 3 thì y ' ≥ 0 với mọi x ∈ − 3 ; − 1 và x ∈ 0 ; 3
Hay
x 2 − 2 m − 1 x − m − 3 ≥ 0 ⇔ x 2 + 2 x + 3 ≥ m 2 x + 1 ⇔ x 2 + 2 x + 3 2 x + 1 ≥ m
với x ∈ 0 ; 3 và x 2 + 2 x + 3 2 x + 1 ≤ m với x ∈ − 3 ; − 1
Xét f ' x = x 2 + 2 x + 3 2 x + 1 = 2 x − 1 x + 2 2 x + 1 → f ' x = 0 ⇔ x = 1 x = − 2
Dựa vào bảng biến thiên của đồ thị hàm số f x , để f x đồng biến trên khoảng − 3 ; − 1 thì m ≤ 2 và để f x đồng biến trên khoảng 0 ; 3 thì m ≥ − 1 ⇒ a 2 + b 2 = 5
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
Đáp án là B.
Ta có y ' ( x ) = ( m - 1 ) x 2 - 2 ( m - 1 ) x - 1
TH1. m - 1 = 0 ⇔ m = 1 .Khi đó
y , = - 1 < 0 , ∀ x ∈ ℝ .Nên hàm só luôn nghịch biếến trên ℝ .
TH2. m - 1 ≢ 0 ⇔ m ≢ 1 .Hàm số luôn nghịch biến trên ℝ khi
y , ≤ 0 , ∀ x ∈ ℝ ⇔ ( m - 1 ) x 2 - 2 ( m - 1 ) x - 1 ≤ 0 , ∀ x ∈ ℝ ⇔ m - 1 < 0 ∆ ' ≤ 0 ⇔ m < 1 m ( m - 1 ) ≤ 0 ⇔ 0 ≤ m ≤ 1 . Kết hợp ta được 0 ≤ m < 1 .