Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)
Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp
nên n^3+3n^2+2n chia hết cho 3!=6
=>Để P nguyên thì 2n+1/1-2n nguyên
=>2n+1 chia hết cho 1-2n
=>2n+1 chia hết cho 2n-1
=>2n-1+2 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)
a: \(A=28n^2+27n+5\)
\(=28n^2+20n+7n+5\)
\(=4n\left(7n+5\right)+\left(7n+5\right)\)
\(=\left(4n+1\right)\left(7n+5\right)\)
Nếu n=0 thì \(A=\left(4\cdot0+1\right)\left(7\cdot0+5\right)=1\cdot5=5\) là số nguyên tố
=>Nhận
Khi n>0 thì (4n+1)(7n+5) sẽ là tích của hai số nguyên dương khác 1
=>A=(4n+1)(7n+5) không thể là số nguyên tố
=>Loại
Vậy: n=0
b: \(B=n\left(n^2+n+7\right)-2\left(n^2+n+7\right)\)
\(=\left(n^2+n+7\right)\left(n-2\right)\)
Để B là số nguyên tố thì B>0
=>\(\left(n^2+n+7\right)\left(n-2\right)>0\)
=>n-2>0
=>n>2
\(B=\left(n^2+n+7\right)\left(n-2\right)\)
TH1: n=3
\(B=\left(3^2+3+7\right)\left(3-2\right)=9+3+7=9+10=19\) là số nguyên tố
=>Nhận
TH2: n>3
=>n-2>1 và \(n^2+n+7>1\)
=>\(B=\left(n-2\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1
=>B chắc chắn không thể là số nguyên tố
=>Loại
c: \(C=n\left(n^2+n+7\right)+\left(n^2+n+7\right)\)
\(=\left(n^2+n+7\right)\left(n+1\right)\)
TH1: n=0
=>\(C=\left(0+0+7\right)\left(0+1\right)=7\cdot1=7\) là số nguyên tố
=>Nhận
TH2: n>0
=>n+1>0 và \(n^2+n+7>1\)
=>\(C=\left(n+1\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1
=>C chắc chắn không thể là số nguyên tố
=>Loại
d: \(D=n^2-1=\left(n-1\right)\left(n+1\right)\)
Để D là số nguyên tố thì D>0
=>(n-1)(n+1)>0
TH1: \(\left\{{}\begin{matrix}n-1>0\\n+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n>1\\n>-1\end{matrix}\right.\)
=>n>1
TH2: \(\left\{{}\begin{matrix}n-1< 0\\n+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n< 1\\n< -1\end{matrix}\right.\)
=>n<-1
Khi n=2 thì \(D=2^2-1=4-1=3\) là số nguyên tố(nhận)
Khi n>2 thì n-1>1 và n+1>3>1
=>D=(n-1)(n+1) là tích của hai số tự nhiên lớn hơn 1
=>D không là số nguyên tố
=>Loại
Khi n=-2 thì \(D=\left(-2\right)^2-1=4-1=3\) là số nguyên tố
=>Nhận
Khi n<-2 thì n-1<-3 và n+1<-1
=>D=(n-1)(n+1)>0 và D bằng tích của hai số nguyên dương lớn hơn 1
=>D không là số nguyên tố
=>Loại
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
Baif1:
Vì biểu thức trên cần lớn hơn 1,nên ta có bất phương trình :
\(\frac{x}{x-6}-\frac{6}{x-9}>1\)
\(\Leftrightarrow\frac{x^2-15x+36}{\left(x-6\right)\left(x-9\right)}\ge\frac{x^2-15x+54}{\left(x-6\right)\left(x-9\right)}\)
\(\Leftrightarrow\frac{x^2-15x+36-\left(x^2-15x+54\right)}{\left(x-6\right)\left(x-9\right)}>0\)
\(\Leftrightarrow\frac{-18}{\left(x-6\right)\left(x-9\right)}>0\)
Vì \(-18< 0\Rightarrow\left(x-6\right)\left(x-9\right)< 0\)
Xét hai trường hợp:
TH1:\(\orbr{\begin{cases}x-6>0\\x-9< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>6\\x< 9\end{cases}}}\)
\(\Leftrightarrow6< x< 9\)(tm)(1)
TH2:\(\orbr{\begin{cases}x-6< 0\\x-9>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 6\\x>9\end{cases}\Leftrightarrow}9< x< 6\left(ktm\right)}\)(2)
Từ (1) và (2) \(\Rightarrow6< x< 9\) lại có \(x\in Z\Rightarrow x\in\left\{7;8\right\}\)
Bài 2:
Ta có:\(2\left(n+2\right)^2+n\left(1-n\right)\ge\left(n-5\right)\left(n+5\right)\)
\(\Leftrightarrow2n^2+8n+8+n-n^2\ge n^2-25\)
\(\Leftrightarrow2n^2-n^2-n^2+8n+n\ge-25-8\)
\(\Leftrightarrow9n\ge-33\)
\(\Leftrightarrow n\ge\frac{-33}{9}\)(1)
Để n không âm thỏa mãn 7-3n là số nguyên,thì \(3n\in Z\Rightarrow n\inℤ+\)(2)
Từ (1) và (2) \(\Rightarrow n\in\left\{0;1;2;............\right\}\)
Đề bài 2 có sai không vậy chứ nó có nhiều sỗ quá bạn ạ
-n^3+9n^2-27n+31 chia hết cho -n+3
=>n^3-9n^2+27n-31 chia hết cho n-3
=>n^3-3n^2-6n^2+18n+9n-27-4 chia hết cho n-3
=>n-3 thuộc {1;-1;2;-2;4;-4}
=>n thuộc {4;2;5;1;7;-1}