Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Xét hàm số y = x 4 - 2 m x 2 + m - 1 , có y ' = 4 x 3 - 4 m x = 0 ⇔ [ x = 0 x 2 = m .
Để hàm số có 3 điểm cực trị khi và chỉ khi m > 0.
Khi đó, gọi A(0;m - 1), B( m ; - m 2 + m - 1 ) và C ( - m ; - m 2 + m - 1 ) là 3 điểm cực trị của ĐTHS.
Gọi H là trung điểm của BC suy ra H 0 ; - m 2 + m - 1 ⇒ A H = m 2 .
Diện tích tam giác ABC là S ∆ A B C = 1 2 . A H . B C = 1 2 m 2 . 2 m = m 2 m .
Và A B = A C = m 4 + m suy ra S ∆ A B C = A B . A C . B C 4 R ∆ A B C ⇒ A B 2 . B C = 4 S ∆ A B C
⇔ m 4 + m . 2 m = 4 m 2 m ⇔ m 4 - 2 m 2 + m = 0 ⇔ m m 3 - 2 m + 1 = 0 .
Kết hợp với m > 0 suy ra có 2 giá trị m cần tìm.
Đáp án B.
Có y ' = − 4 x 3 + 4 m x . y ' = 0 ⇔ x = 0 x = m c = − m (Có 3 cực trị nên m > 0 ).
3 điểm cực trị là A 0 ; − 1 ; B m ; m 2 − 1 ; C − m ; m 2 − 1 . O là tâm đường tròn ngoại tiếp
⇔ O A = O B = O C ⇔ 1 = m + m 2 − 1 2 ⇔ m 4 − 2 m 2 + m = 0 ⇔ m m − 1 m 2 + m − 1 = 0 ⇔ m = 1 m = − 1 + 5 2 (Ta chỉ lấy m > 0 .)
Đáp án B
Tam giác có tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp trùng nhau là tam giác đều.
Bài toán trở thành tìm số các giá trị thực của tham số m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác đều.
Trong sách Công phá toán 3 tác giả đã đề cập đến công thức tổng quát cho bài toán này.
Để thỏa mãn yêu cầu trên thì b 3 a = − 24 ⇔ − 2 m − 1 3 1 = − 24 ⇔ m − 1 3 = 3 .
Phương trình có duy nhất một nghiệm nên ta chọn B
Đáp án D
Phương trình hoành độ giao điểm của C và d là
x x − 1 = m − x ⇔ x ≠ 1 x 2 − m x + m = 0 * .
Để C cắt d tại hai điểm phân biệt ⇔ * có hai nghiệm phân biệt khác 1 ⇔ m > 4 m < 0 .
Khi đó, gọi điểm A x 1 ; m − x 1 và B x 2 ; m − x 2 là giao điểm của đồ thị C và d .
⇒ O A = 2 x 1 2 − 2 m . x 1 + m 2 = 2 x 1 2 − m x 1 + m + m 2 − 2 m = m 2 − 2 m O B = 2 x 2 2 − 2 m . x 2 + m 2 = 2 x 2 2 − m x 2 + m + m 2 − 2 m = m 2 − 2 m
Khoảng cách từ O đến AB bằng
h = d O ; d = m 2 ⇒ S Δ A B C = 1 2 . h . A B = m 2 2 . A B
Ta có
S Δ A B C = a b c 4 R ⇔ R = a b c 4. S Δ A B C = O A . O B . A B 2. h . A B = O A . O B 2. h ⇔ 4 2 . m 2 = O A . O B ⇔ O A 2 . O B 2 = 16 m 2
Khi đó m 2 − 2 m 2 = 16 m 2 ⇔ m 2 − 2 m = 4 m m 2 − 2 m = − 4 m ⇔ m = 0 m = − 2 m = 6 .
Kết hợp với điều kiện m > 4 m < 0 , ta được m = − 2 m = 6 là giá trị cần tìm
Đáp án B
Ta có y ' = 4 x 3 - 4 m x = 4 x ( x 2 - m ) để tồn tại ba điểm cực trị thì m>0 khi đó tọa độ ba điểm cực trị là A ( 0 ; m 4 + 2 m ) , B ( m ; m 4 - m 2 + 2 m ) , C ( - m ; m 4 - m 2 + 2 m )
⇒ A B = A C = m 4 + m , B C = 2 m gọi M là trung điểm B C ⇒ M B = m ⇒ A M = A B 2 - M B 2 = m 4 + m - m = m 2 ⇒ S A B C = 1 2 A M . B C = 1 2 m 2 . 2 m = m 2 . m
Mặt khác r = S P = m 2 m m 4 + m + m = m 2 m 3 + 1 + 1 = m 3 + 1 - 1 m R = A B . A C . B C 4 S = ( m 4 + m ) 2 m 4 m 2 m = 1 2 m 3 + 1 m theo giả thiết R = 2 r ⇒ 1 2 ( m 3 + 1 ) m = 2 ( m 3 + 1 - 1 ) m ⇔ ( m 3 + 1 ) = 4 m 3 + 1 - 4 ⇔ ( m 3 + 1 - 2 ) 2 = 0 ⇔ m 3 + 1 = 2 ⇔ m 3 = 3 ⇔ m = 3 3