K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

m^2 + 1 \(\ge1\)  với mọi m . Mà m, n là số nguyên => 2^n > 1 => n là số nguyên không âm.

+) TH1: n = 0 

=> m^2 + 1 = 1 => m = 0  ( thỏa mãn ) 

+) TH2: n = 1 

=> m^2 + 1 = 2 => m^2 = 1 <=> m = 1 hoặc m = - 1 thỏa mãn

+) TH3: n> 1 

=> 2^n \(⋮\)

Mà m^2 + 1 chia 4 dư 1 

=> loại 

Vậy ( m; n ) \(\in\){ ( 0; 0) ; ( 1; 1) ; (-1; 1 ) }

26 tháng 4 2020

Sửa lại một chút ở dòng thứ 8:

Mà m^2 + 1 chia 4 dư 1 hoặc 2  ( vì m^2 chia 4 dư 0 hoặc 1 )

DD
21 tháng 8 2021

Với \(m\)chẵn: \(m^2+1=\left(2k\right)^2+1=4k^2+1\)

Với \(m\)lẻ: \(m^2+1=\left(2k+1\right)^2+1=4k^2+4k+1+1=4k^2+4k+2\)

Do đó \(m^2+1\)chia cho \(4\)dư \(1\)hoặc \(2\).

Mà với \(n\ge2\)thì \(2^n⋮4\)do đó mâu thuẫn. 

Vậy \(n=0\)hoặc \(n=1\).

Thử với từng giá trị ta thu được nghiệm là \(\left(0,0\right),\left(\pm1,1\right)\).

12 tháng 3 2017

n có thể =3,6,9,12,15,...mõi số cách nhau 3 đơn vị

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }