K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2020

Có: \(x^5+y^2=xy^2+1\)

<=> \(x^5-1=y^2\left(x-1\right)\)(1)

TH1: x = 1 

=> \(1^2+y^2=1.y^2+1\) đúng với mọi y

TH2: \(x\ne1\)

(1) <=> \(y^2=x^4+x^3+x^2+x+1\)

<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)

Có:

+)  \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)

\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)

=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)

+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)

=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)

<=> x = 0 

=> \(y=\pm1\)

TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)

<=> \(2x+3-x^2=0\)

<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Với x = -1 => \(y=\pm1\)

Với x = 3 => \(y=\pm11\)

Kết luận:...

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

4 tháng 10 2018

\(x^5+y^2=xy^2+1\)

\(\Rightarrow x^5+y^2-xy^2-1=0\)

\(\Leftrightarrow\left(x^5-1\right)-\left(xy^2-y^2\right)=0\)

\(\Leftrightarrow\text{ }\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)-y^2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1-y^2\right)=0\)

4 tháng 10 2018

cảm ơn bạn Nguyễn Xuân Anh nha

19 tháng 3 2017

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:

\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)

\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)

Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)

\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)

Suy ra \(b^2+1\inƯ\left(10\right)=....\)

Tự làm nốt nhá, trở thành bài lớp 6 r` :)

19 tháng 3 2017

Mơn nhìu ạ

\(\left(x^2-x+1\right)\left(xy+y^2\right)=3x-1\left(1\right)\)

\(3x-1⋮x^2-x+1\)

zì \(lim\left(x\rightarrow\infty\right)\frac{3x-1}{x^2-x+1}=0\)

zà thấy x=2 thỏa mãn ,=> x=1

thay zô 1 ta có

\(1\left(y+y^2\right)=2=>y^2+y-2=0=>\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

zậy \(\left(x,y\right)\in\left\{\left(1,1\right)\left(1,-2\right)\right\}\)