K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 5 2021

\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)

Từ đây bạn xét các trường hợp và giải ra nghiệm. 

6 tháng 12 2020

Bài làm

Ta có : y( x - 1 ) = x2 + 2

<=> x2 + 2 - y( x - 1 ) = 0

<=> x2 - x + x - 1 + 3 - y( x - 1 ) = 0

<=> x( x - 1 ) + ( x - 1 ) - y( x - 1 ) + 3 = 0

<=> ( x - 1 )( x - y + 1 ) = -3

Vì x, y ∈ Z => \(\hept{\begin{cases}x-1\inℤ\\x-y+1\inℤ\end{cases}}\)

Lại có \(-3=\hept{\begin{cases}-1\cdot3\\-3\cdot1\end{cases}}\)

=> Ta có bảng sau :

x-11-13-3
x-y+1-33-11
x204-2
y6-26-2

Tất cả các giá trị trên đều thỏa x, y ∈ Z

Vậy ( x ; y ) = { ( 2 ; 6 ) , ( 0 ; -2 ) , ( 4 ; 6 ) , ( -2 ; -2 ) }

6 tháng 12 2020

y(x - 1) = x2 + 2 

=> y(x - 1) - x2 - 2 = 0

=> y(x - 1) - x2 + 1 = 3

=> y(x - 1) - (x2 - 1) = 3

=> y(x - 1) - (x - 1)(x + 1) = 3

=> (x - 1)(y - x - 1) = 3

Ta có 3 = 1.3 = (-1).(-3)

Lập bảng xét các trường hợp

x - 113-1-3
y - x - 131-3-1
x240-2
y66-2-2

Vậy các cặp số (x;y) thỏa mãn là (2;6) ; (4;6) ; (0;-2) ; (-2;-2)

25 tháng 2 2018

Bạn đặt chia ra ta đc : \(A\left(x\right)=\left(x-1\right)\left(ax+b+a\right)+a+b+c\)

Và \(A\left(x\right)=\left(x+1\right)\left(ax+b-a\right)+c-b+a\)

Vì số dư bằng nhau nên : \(a+b+c=c-b+a\)=> b=0

10 tháng 7 2020

Ta có :

\(\left(x^2-x+1\right)\left(y^2+xy\right)=3x+1\left(∗\right)\Rightarrow x^2-x+1|3x+1\Rightarrow x^2-x+1\le\left|3x-1\right|\)

TH1 :

\(x\ge\frac{1}{3}\Leftrightarrow x^2-x+1\le3x-1\Leftrightarrow x^2-4x+2\le0\Leftrightarrow2-\sqrt{2}\le x\le2+\sqrt{2}\left(tm\right)\)

Mà \(x\in Z\Rightarrow x\in\left\{1;2;3\right\}\)

TH2 :

\(x\le\frac{1}{3}\Leftrightarrow x^2-x+1\le-3x+1\Leftrightarrow x^2+2x\le0\Leftrightarrow-2\le x\le0\left(tm\right)\)

Mà \(x\in Z\Rightarrow x\in\left\{-2;-1;0\right\}\)

\(\Rightarrow x\in\left\{-2;-1;0;1;2;3\right\}\)

+) \(\forall x=−1⇒\left(∗\right)⇔3(y^2-y)=−4⇔y^2−y=−\frac{4}{3}\left(vn\right)\)

+) \(\forall x=0⇒\left(∗\right)⇔y^2=−1\left(vn\right)\)

+) \(\forall x=1\Rightarrow\left(∗\right)\Leftrightarrow y^2+y=2\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}\left(tm\right)}\)

Với x = 2 ; x = 3 ... ( vn ) ( Làm tương tự như trên:v )

Vậy các nghiệm nguyên của pt đã cho là \(\left(x;y\right)=\left\{\left(-2;1\right);\left(1;1\right);\left(1;-2\right)\right\}\)

13 tháng 7 2020

@LetHateHim : Đề bài là 3x- 1 mà bạn