Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+2xy+2y+6=0
x . (1 + 2y) + 2y + 6 = 0
x . (1 + 2y) + 2y + 1 = 5
(1 + 2y) . (x + 1) = 5
Phần còn lại làm đc nốt chưa
( x - 7 ) ( 2y + 3 ) = 32
<=> ( 2x - 14 ) y + 3x - 21 = 32
<=> ( 2x - 14) y + 3x - 32 - 21 = 0
<=> ( 2x - 14 ) y + 3x - 53 = 0
<=> ( 2x - 7) = 0
<=> 2x=2.7
<=> x = 7
<=> 2y + 3 = 0
<=> 2y = -3
<=> y = -1,5
Có \(2xy+3x-2y=20\)
\(\Rightarrow\left(2xy-2y\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x-3=20-3\)
\(\Rightarrow2y\left(x-1\right)+3\left(x-1\right)=17\)
\(\Rightarrow\left(2y+3\right)\left(x-1\right)=17\)
\(\Rightarrow\hept{\begin{cases}2y+3\inƯ\left(17\right)\\x-1\inƯ\left(17\right)\end{cases}}\)
Ta có bảng giá trị sau:
2y+3 | 1 | 17 | -17 | -1 |
x-1 | 17 | 1 | -1 | -17 |
x | 18 | 2 | 0 | -16 |
y | -1 | 7 | -10 | -2 |
Vậy các cặp (x;y) thỏa mãn là (18;-1),(2;7),(0;-10);(-16;-2)
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
xy + 2x + y - 1 = 0
<=> x(y + 2) + (y + 2) = 3
<=> (x + 1)(y + 2) = 3 = 1.3 = (-1).(-3)
Lập bảng:
x + 1 | 1 | -1 | 3 | -3 |
y + 2 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 1 | -5 | -1 | -3 |
Vậy ....
xy+2x+y-1=0
<=> x(y+2)+(y+2)=3
<=> (y+2)(x+1)=3
x,y nguyên => y+2; x+1 nguyên
=> y+2;x+1\(\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
y+2 | -1 | -3 | 3 | 1 |
y | -3 | -5 | 1 | -1 |
Vậy (x;y)={(-4;-3);(-2;-5);(0;1);(2;-1)}
Ta có: xy - 2x + y + 1 = 0
=> x(y - 2) + (y - 2) = -3
=> (x + 1)(y - 2) = -3
=> x + 1; y - 2 \(\in\)Ư(-3) = {1; -1; 3; -3}
Lập bảng:
x + 1 | 1 | -1 | 3 | -3 |
y - 2 | -3 | 3 | -1 | 1 |
x | 0 | -2 | 2 | -4 |
y | -1 | 5 | 1 | 3 |
Vậy ...
x.y - 2x + y + 1 = 0
<=>x(y-2) + (y-2) =-3
<=> (y-2)(x+1)=-3
th1: y-2 =1 ; x+1=-3
<=> x=-4 ; y=3
th2 y-2 =-1 ; x+1 =3
<=> y=1 ; x=2
th3 y-2 =3 ; x+1=-1
<=> y=5 ; x=-2
th4 y-2 =-3; x+1 = 1
<=> y=-1 ; x=0
2\(xy\) + 4\(x\) + y + 2 = 4 + 2
2\(x\).( y + 2) + (y + 2) = 6
(y + 2).(2\(x\) + 1) = 6
Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}
Lập bảng ta có:
2\(x+1\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(x\) | -\(\dfrac{7}{2}\) | -2 | -\(\dfrac{3}{2}\) | -1 | 0 | \(\dfrac{1}{2}\) | 1 | \(\dfrac{7}{2}\) |
y + 2 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | -3 | -4 | -5 | -8 | 4 | 1 | 0 | -1 |
Theo bảng trên ta có các cặp (\(x\);y) nguyên thỏa mãn đề bài là:
(\(x\); y) = (-2; -4); (-1; -8); (0; 4); (1; 0)
2x2+y2−6x+2xy−2y+5=02x2+y2−6x+2xy−2y+5=0
⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0
⇔(x−2)2+(x+y)2−2(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0
⇔(x−2)2+(x+y
MÁY TÔI LỖI ,SORRY
2x2+y2−6x+2xy−2y+5=02x2+y2−6x+2xy−2y+5=0
⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0⇔(x2−4x+4)+(x2+2xy+y2)−(2x+2y)+1=0
⇔(x−2)2+(x+y)2−2(x+y)+1=0⇔(x−2)2+(x+y)2−2(x+y)+1=0
⇔(x−2)2+(x+y