K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Bài này trong câu hỏi tương tự

16 tháng 7 2018

mình ko biết làm

2 tháng 9 2018

Sao câu dễ vậy mà không ai trả lời đc

2 tháng 9 2018

Giả sử x lớn hơn y

Thấy x2 + 8y lớn hơn x2 và nhỏ hơn x+ 8x nhỏ hơn (x + 4)suy ra nó nằm giữa 2 cái bình phương vừa nêu. Áp dụn chẵn lẻ loại 2 th suy ra 2y = x + 1 thay vào y+ 8x là ra thôi. Thầy mình ra bài này thấy dễ quá định lên mạng chép mà mấy thằng thông minh không rảnh mà lên mạng. Với cả thay vào y+ 8x kẹp tiếp bạn nhé rồi xét TH. Xong 😅

Không mất tính tổng quát giả sử x ≥ y

⇒x²<x²+8y≤x²+8x<(x+4)²

VÌ x²+8yx²+8y là số chính phương ⇒x²+8y=(x+1)2x²+8y=(x+1)2

hoặc x²+8y=(x+2)2x²+8y=(x+2)² 

hoặc x²+8y=(x+3)²

Nếu x²+8y=(x+1)²

⇒8y=2x+1 (vô lí vì 1 bên lẻ 1 bên chẵn)

Nếu x²+8y=(x+2)²  ⇒8y=4x+4  ⇒2y=x+1

⇒[(x+1)2]²+8x  ⇒(x+12)²+8x là số chính phương.

⇒x²+34x+1=a² với a∈N

⇒(x+17)²−288=a²

        ⇒(x+17−a)(x+17+a)=288

Đến đây thì dễ rồi

Nếu x²+8y=(x+3)2 ⇒8y=6x+9x²+8y=(x+3)² 

⇒8y=6x+9 (Vô lí vì VT chẵn còn VP thì không)

Giả sử x ≤ y

Ta có: y2 ≤ y2 + 8x ≤ y2 + 8y ≤ y2 + 8y + 16 = (y + 4)2

=> y2 + 8x = (y+1)²

                      (y+2)²

                       (y+3)²

Xét TH1 : y2 + 8x = (y + 1)2

=> y2 + 8x = y2 + 2y +1

=> 8x - 2y = 1

=> 4x - y = 1212 => Loại vì x, y ∈ N*

Xét TH2: y2 + 8x = (y + 2)2

=> y2 + 8x = y2 + 4x + 4

=> 8x - 4y = 4

=> 2x - y = 1 mà x;y ∈ N* nên ta có các trường hợp sau:

Nếu x = 1 => y = 1 => x2 + 8y = 9 (TM) ; y2 + 8x = 9 (TM)

Nếu x = 2 => y = 3 => x2 + 8y = 28 (Loại)

Nếu x ≥ 3 => 2x ≥ 6 => y ≤ 5 => Loại vì x≤ y

Xét TH3 : y2 + 8x = ( y +3 )2

=> y2 + 8x = y2 + 6y + 9

=> 8x - 6y = 9

=> 4x - 3y = 4,5 => Loại vì x,y ∈ N*

Vậy (x,y) = (1;1)

cái dới không correct

13 tháng 6 2020

TRẢ LỜI HỘ MK VS MK CÂN GẤP -_-

25 tháng 4

đã 4 năm trôi qua và ... tui ko bt

 

NV
14 tháng 3 2022

- Với \(x=1\) ko thỏa mãn

- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn

- Với \(x\ge3\)

\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)

\(\Rightarrow2\left(x+y\right)⋮xy+2\)

\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)

\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)

\(\Rightarrow y=\left\{1;2;3;4\right\}\)

Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu

Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)

\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m

Tương tự...

14 tháng 3 2022

Em cả mơn thầy 

Thầy mãi đỉnh

9 tháng 10 2018

can you hẹp me?? mk đang cần gấp 

24 tháng 12 2019

Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]

Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2

Thay các giá trị xx vào biểu thức ta tìm được yy

Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}

k mik nha