K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

3b2+3a2-7a-7b+4=0

=>a(3a-7)+b(3b-7)=0

21 tháng 1 2020

Ta có: 

12(3a2 + 3b2 - 7a - 7b + 4) = 0

<=> (6a - 7)2 + (6b - 7)2 = 50

<=> (6a - 7, 6b - 7) = (1, 49; 49, 1; 25, 25)

26 tháng 11 2021

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

17 tháng 3 2020

\(\sqrt{a^2+\left(2^{a-3}+2^{-a-1}\right)^2}+\sqrt{a^4+a^2+2}=\sqrt{\left(a^2+a+1\right)^2+\left(1+2^{a-3}+2^{-a-1}\right)^2}\)

đề thế cơ mà , làm t nghĩ mà đell nghĩ đc j .

làm này . 

Không mất tính tổng quát 

đặt \(x=a>0,y=2^{a-3}+2^{-a-1}>0,z=a^2+1>0,t=1>0\)

khi đó phương trình trở thành

\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}=\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(1\right)\)

Mặt khác ta cũng có :\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(2) zới mọi \(x,y,z,t>0\)

\(\Leftrightarrow x^2+y^2+z^2+t^2+2\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)( biến đổi từ cái trên nhá )

\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2+y^2+z^2+t^2+2\left(xz+yt\right)\)

\(\Leftrightarrow x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+y^2t^2+2xyzt\Leftrightarrow\left(yz-xt\right)^2\ge0\)(luôn đúng zới mọi x,y,z,t > 0)

zậy từ (1) zà (2) xảy ra khi zà chỉ khi yz=xt

=>\(\left(2^{a-3}+2^{-a-1}\right)\left(a^2+1\right)=a\Leftrightarrow\left(2^{a-3}+2^{-a-1}\right)=\frac{a}{a^2+1}\left(3\right)\)(zì \(a^2+1>0\)

mà lại có \(\frac{a}{a^2+1}\le\frac{1}{2}\)(zì \(\left(a-1\right)^2\ge0\), dấu "=" xảy ra khi a=1 (4)

zà \(\left(2^{a-3}+2^{-a-1}\right)=\frac{2^a}{8}+\frac{1}{2.2^a}\ge\frac{1}{2}\)(theo cô-si nha) ,dấu "=" xảy ra khi a=1 (5)

zậy từ (3) , (4) , (5) \(=>a=1\)là giá trị nguyên dương duy nhất cần tìm

17 tháng 3 2020

à thì ra ghi dài quá nó cho xuống dòng

làm t cứ tưởng

hì hì

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0