Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Gọi số tự nhiên đó là a.
Vì a chia 3, 4, 5, 6 đều dư 2 nên \(a-2\in BC\left(3,4,5,6\right)\)
Ta có: 4 = 22 ; 6 = 2. 3
\(\Rightarrow\left[3,4,5,6\right]=3.2^2.5=60\)
\(\Rightarrow a-2\in B\left(60\right)=\left\{0;60;120;180;240;300;360;420;...\right\}\)
\(\Rightarrow a\in\left\{2;62;122;182;242;302;362;422;...\right\}\)
Mà a chia 7 và a là số nhỏ nhất nên a = 122
Vậy số tự nhiên cần tìm là 122.
a, Gọi số cần tìm là x, x ∊ N (1). Vì x ⋮ 3 dư 2, x ⋮ 8 dư 4 => x + 28 ⋮ 3 và 8 hay x + 28 ∊ BC(3;8) (2), mà 3 và 8 NTCN => BCNN(3;8) = 3.8 = 24 => BC(3;8) = {0;24;48;72;...} (3). Từ (1)(2)(3) => x + 28 = 48 => x = 48 - 28 = 20. Vậy số cần tìm là 20. b, Gọi số đó là n. Vì n ⋮ 3 dư 1, n ⋮ 4 dư 3, n ⋮ 5 dư 1 => n + 29 ⋮ 3,4,5 mà 3,4,5 NTCN => n + 29 ⋮ 3.4.5 = 60 => n ⋮ 60 dư (60 - 29) = 31. Vậy n ⋮ 60 dư 31. Hok tốt
Giải:
Gọi số cần tìm là A. Khi đó A + 2 là số chia hết cho 3; 5 và 7.
Vậy số nhỏ nhất chia hết cho 3; 5; 7 là: 3 x 5 x 7 = 105
Số cần tìm là: 105 - 2 = 103
ĐS: 103
ta thấy:
a-1 chia hết cho 3 =>a+2 chia hết cho 3
a-3 chia hết cho 5 =>a+2 chia hết cho 5
a-5 chia hết cho 7 =>a+2 chia hết cho 7
=> a+2 thuộc BC(3;5;7) và vì a+2 là số tự nhiên nhỏ nhất chia hết cho 3;5;7 nên a thuộc BCNN(3;5;7)
ta có :
3=3
5=5
7=7
=>BCNN(3;5;7)=3.5.7=105
=> a+2=105
=> a = 105-2
=> a =103