Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(2x+y\right)=1;2y+z=2;2z+x=3\)
\(\Rightarrow2x+y+2y+z+2z+x=1+2+3\)
\(\Rightarrow3x+3y+3z=6\)
\(\Rightarrow x+y+z=2\)
a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)
Từ đó ta có :
\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\)
b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)
Lần lượt xét từng trường hợp , ta được :
(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)
a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)
Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)
Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;0\right)\)
b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)
tương tự giải 6 TH là được
Theo đề bài ta có: 2x-y=1; 2y-z=2; 2z-x = 3
=> (2x-y)+(2y-z)+(2z-x) = 1+2+3
2x-y+2y-z+2z-x = 6
(2x-x)+(2y-y)+(2z-z) = 6
=> x+y+z = 6 = T
Vậy T = x+y+z = 6.
a. Ta có:
( x+1)( y-5 )= 6
=> x+1; y-5 ∈ 6
=> x+1; y-5 ∈ { 1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y-5 | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
x | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -6 |
y | 11 | -1 | 8 | 2 | 7 | 3 | 6 | Còn |
Còn Câu B bạn tự làm nhé, tương tự như câu a
b,/2x-5/=13
\(\Rightarrow\)\(\orbr{\begin{cases}2x-5=-13\\2x-5=13\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-13+5=-8\\2x=13+5=18\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-8:2=-4\\x=18:2=9\end{cases}}\)
vậy x\(\in\){9,-4}
mk cũng đang cần phần a đây