Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2xy-3y^2=3x-y+2\)
\(\Leftrightarrow x^2-2xy-3x-3y^2+y-2=0\)
\(\Leftrightarrow x^2-x\left(2y+3\right)-3y^2+y-2=0\)
\(\Leftrightarrow4x^2-4x\left(2y+3\right)+\left(2y+3\right)^2-\left(2y+3\right)^2-12y^2+4y-8=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-4y^2-12y-9-12y^2+4y-8=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-16y^2-8y-17=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(16y^2+8y+1\right)=16\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(4y+1\right)^2=16\)
\(\Leftrightarrow\left(2x-6y-4\right)\left(2x+2y-2\right)=16\)
\(\Leftrightarrow\left(x-3y-2\right)\left(x+y-2\right)=4\)
Đến đây bn tự giải nha
đoạn cuối là \(\Leftrightarrow\left(x-3y-2\right)\left(x+y-1\right)=4\)
x2+y2+6x-3x-2xy+7=0
\(\Leftrightarrow x^2+2\left(3-y\right)x+y^2-3y+7=0\)
Coi đây là pt bật 2 ẩn x ta có
\(\Delta'=\left(3-y\right)^2-y^2+3y-7\)
\(=y^2-6y+9-y^2+3y-7\)
\(=2-3y\)
Để pt có nghiệm \(\Leftrightarrow\Delta'\le0\)
\(\Rightarrow2-3y\le0\Leftrightarrow y\le\frac{2}{3}\)
y lớn nhất \(\Rightarrow y=\frac{2}{3}\)
thay vào tính tiếp
\(x^2-3y^2+2xy-2x+6y-4=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)
Làm nôt
Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)
Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)
\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)
Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)
\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)
Đến đây bí!
\(2xy-3y+3x=7\)
\(\Leftrightarrow4xy-6y +6x=14\)
\(\Leftrightarrow2y\left(2x-3\right)+6x-9=5\)
\(\Leftrightarrow2y\left(2x-3\right)+3\left(2x-3\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+3\right)=5\)
Vì \(x,y\in N\)\(\Rightarrow2y+3\ge3\)\(\Rightarrow2y+3\inƯ\left(5\right)=\left\{5\right\}\)
\(\Rightarrow2y+3=5\Leftrightarrow y=1\)
\(\Rightarrow\left(2x-3\right)\left(2+3\right)=5\)
\(\Leftrightarrow2x-3=1\)
\(\Leftrightarrow x=2\)