Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ 2x - 1 = \(5^{98}:5^{96}\)
2x - 1 = \(5^2\) = 25
2x = 25 + 1 = 26
x = 26 : 2
x = 13
d/ 7x + 3 = \(3^5.2^3.9\)
7x + 3 = \(3^5.3^2.8=3^7.8=2187.8\)
7x + 3 = \(17496\)
7x = 17496 - 3 = 17493
x = 17493 : 7
x = 2499
e/\(2^{2x+6}=1\)
\(2^{2x+6}=2^0\)
2x + 6 = 0
2x = 0 - 6 = - 6
x = - 6 : 2
x = - 3
j/ \(2^x=8\)
\(2^x=2^3\)
x = 3
g/ \(2^x:2^3=16\)
\(2^{x-3}=2^4\)
x - 3 = 4
x = 4 + 3
x = 7
h/ \(2^x+2^{x+1}+2^{x+2}=56\)
\(2^x\left(1+2+2^2\right)\) = 56
\(2^x.7=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
x = 3
Bài a, b thiên phong giải r, mk chỉ làm những bài còn lại thôi. Chúc bạn học tốt!!!
1+3+5+...+x=1600
=(x+1).[(x-1):2+1] /2 =1600
=(x+1).(x+1) /2 =1600
=(x+1)^2:2=40^2
=(x+1):2=40
=x+1=80
=x=79
Ta có :
a) \(1+3+5+...+\left(2x-1\right)=\frac{\left(2x-1\right)+1}{2}\left(\frac{\left(2x-1\right)-1}{2}+1\right)=x^2\)
\(\Leftrightarrow x^2=225\Rightarrow x=15\)
b) \(2^x+2^{x+1}+...+2^{x+2015}=2^x\left(2^0+2^1+...+2^{2015}\right)\)
Đặt A = 20 + 21 + ... + 22015 . Ta có :
2A = 21 + 22 + ... + 22016
⇒ A = 2A - A = (21 +22 +...+22016 )-(20 + 21 + ... +22015 )
⇒ A = 22016 - 1
⇔ 2x.A = 22019 - 8
⇔ 2x( 22016 - 1 ) = 23 ( 22016 - 1 )
⇔ x = 3
Đề bài c) chưa đủ ý nên o làm đc
1 /
abc = 198
2 /
Ta có: a,bc = 10 : ( a+b+c )
=> a,bc x (a + b + c) = 10
=> a,bc x 100 x (a + b + c) = 10 x 100
=> abc x (a + b + c) = 1000
=> 1000 phải chia hết cho abc
=> abc thuộc Ư(1000) = {100; 125; 200;250;500}
Xét từng trường ta thấy abc = 125 thỏa mãn
Vậy a.bc = 1,25
3 /
a ) Nhận thấy
5^b tận cùng là 5
mà 2^a + 124 tận cùng cũng phải là 5
=> 2^a tận cùng là 1 mà 2^a tận cũng là số chẵn trừ số 0
=> a = 0
ta có
2^0 + 124 = 5^b
=> 125 -= 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b = 3
b ) nhận thấy
cứ nhân 5 lần số 3 với nhau tận cùng là 3
mà có : 101 : 5 = 20 ( dư 1 )
sau khi có tận cùng là 3 ta nhân thêm 1 số 3 nữa được tận cùng là 9
4 /
a ) = 315
b ) = 216
c ) = 0 , 015555555555554
d ) = 2
nhé !
Số số hạng là :
(2x - 2) : 2 + 1 = x - 1 + 1 = x (số)
Tổng là :
(2x + 2).x : 2 = 210
=> (2x2 + 2x) : 2 = 210
=> x2 + x = 210
=> x(x + 1) = 210
=> x(x + 1) = 20.21
=> x = 20
Vậy x = 20
Ta có : \(\frac{x}{2}=\frac{10}{x+1}\)
=> x(x + 1) = 10.2
=> x(x + 1) = 20
=> sai đề
=> (1+2X-1)x (2x-1+1)/4=225
=> 2x+2x/4=225
=> 4x^2/4=225
=> x^2= 225
=> x=15
cái ^ là mũ nha bạn
chúc bn hok tốt
`Answer:`
a. Tổng: \([\left(2x-1\right)-1]:2+1=x\) số hạng
Ta có: \(1+3+5+7+9+...+\left(2x-1\right)=225\)
\(\Rightarrow x.\left(2x-1+1\right):2=225\)
\(\Leftrightarrow2x^2:2=225\)
\(\Leftrightarrow x^2=225\)
\(\Leftrightarrow x=15\)
b. Mình sửa đề nhé: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2015}=2^{2019}-8\)
\(\Rightarrow2^x.\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8\)
Ta đặt \(K=1+2+2^2+...+2^{2015}\)
\(\Rightarrow2^x.K=2^{2019}-8\)
\(\Rightarrow2K=2.\left(1+2+2^2+...+2^{2015}\right)\)
\(\Rightarrow2K=2+2^2+2^3+...+2^{2015}+2^{2016}\)
\(\Rightarrow2K-K=\left(2+2^2+2^3+...+2^{2015}+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(\Rightarrow K=2^{2016}-1\)
\(\Rightarrow2^x.\left(2^{2016}-1\right)=2^{2019}-8\)
\(\Rightarrow2^{x+2016}-2^x=2^{2019}-2^3\)
\(\Rightarrow\hept{\begin{cases}x+2016=2019\\x=3\end{cases}}\Rightarrow x=3\)