Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 3 cách : + tính AB, BC rồi tính AC
+ tính AB, AC rồi tính BC
+ tính BC, AC rồi tính AB
Với một điểm bất kì trong 6 điểm phân biệt cho trước, ta vẽ được 5 đường thẳng tới các điểm còn lại. Như vậy với 6 điểm, ta vẽ được 5.6 đường thẳng tới các điểm còn lại. Nhưng như vậy một đường thẳng đã được tính 2 lần do đó thực sự chỉ có 5.6 : 2 = 15 ( đường thẳng)
Ta có: \(\frac{a}{b}< \frac{a+1}{b+1}\)
\(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}=\frac{10^{2012}+1}{2^{2013}+1}=A\)
Vậy: \(A>B\)
Ta có:
\(10A=\frac{10\left(10^{2012}+1\right)}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=\frac{10^{2013}+1}{10^{2013}+1}+\frac{9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)
\(10B=\frac{10\left(10^{2013}+1\right)}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=\frac{10^{2014}+1}{10^{2014}+1}+\frac{9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)
Vì 102013+1<102014+1
\(\Rightarrow\frac{9}{10^{2013}+1}>\frac{9}{10^{2014}+1}\)
\(\Rightarrow1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
\(\left|x-\frac{1}{3}\right|+\left|x-y\right|=0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{3}=0\\x-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{1}{3}\\x=y\end{cases}\)\(\Leftrightarrow x=y=\frac{1}{3}\)
Bạn tìm ước của 120 và tìm luôn bội của 12. Sau đó bạn tìm giao của hai tập hợp.
Ta có: ( x + 2)( x - 5) = -12
=> \(x+2\inƯ\left(-12\right);x-5\inƯ\left(-12\right)\)
mà Ư (-12) = \(\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x+2\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\\x-5\in\left\{"....."\right\}\end{matrix}\right.\)
Xét các t/h:
★Happy♣
♥ New ☆
♣Year♥
★2017♣
★An♣
★Khang♣
★Thịnh♣
★Vượng♣★Happy♣ ♥ New ☆
(¯`v´¯)....L.O.V.E.....
.`·.¸. · ´.........Y.O.U...
¸.·... ´¸.·´¨) ¸.·"¨.......
(¸.·´ (¸.·´ .·´ ¸¸.·¨¯`·..
-:¦:-·:*'.☆.'*:·-:¦:-
-:¦:-,'*:··:*',.:·-:¦:-
:_Happy New year_:
-:¦:**.'*:·:*'**:¦:-
Chúc mừng năm mới
-:¦:-·:*'*:·:*'*:·-:¦:-
------★2017★------
Cảm ơn bạn nhiều. Mình chúc bạn một năm mới tràn đầy hạnh phúc và bình an.
Tick nhé!
64=8.8=82
169=13.13=132
196=14.14=142
Mẹo nhỏ: Chữ số tận cùng là 4 sẽ là bình phương của số có tận cùng là 2 hoặc 8
Chữ số tận cùng là 9 sẽ là bình phương của những số có tận cùng là 3
Chữ số tận cùng là 6 khi bình phương của những số là 2; 4;6
Gọi số tự nhiên cần tìm là n ( 0 < n < 2002 ) , tổng các chữ số của n là S(n) > 0
Ta có : \(n+S\left(n\right)=2002\Rightarrow\begin{cases}n< 2002\\S\left(n\right)< n\end{cases}\)
Mặt khác, ta lại có : \(S\left(n\right)\le9+9+9+1=28\Rightarrow n\ge1974\)
Vậy : \(1974\le n\le2001\) . Xét n trong khoảng trên được n = 1982 và n = 2000 thoả mãn đề bài.
Gọi nn là số tự nhiên cần tìm và S(n)S(n) là tổng của nó
n+S(n)=2002n+S(n)=2002 khi đó do n<2002n<2002 nên S(n)≤1+9+9+9=28S(n)≤1+9+9+9=28
mà S(n)≡n(mod9)S(n)≡n(mod9) nên 2S(n)≡n+S(n)≡4(mod9)2S(n)≡n+S(n)≡4(mod9)
Suy ra S(n)≡2(mod9)S(n)≡2(mod9)
Xét 3 TH của S(n)S(n) là 2,11,202,11,20 là xong