Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên n nhỏ nhất để các phân số sau tối giản : 1/n+3;2/n+4;3/n+5;....;2001/n+2003;n/n+2004
a) Khi n = 10 có:
\(A=\frac{10-5}{10+1}=\frac{5}{11}\)
b) Khi n = 0
\(A=\frac{0-5}{0+1}=-\frac{5}{1}=-5\)
c) Để A thuộc Z thì n - 5 chia hết cho n + 1
=> n - 6 + 1 chia hết cho n + 1
=> n + 1 chia hết cho n + 1 => -6 chia hết n + 1
=> n + 1 thuộc Ư (6) = {1;2;3;6;-1;-2;-3;-6}
=> n thuộc {0;1;2;5;-2;-3;-4;-7}
d. Để A tối giản thì n = {0;5;-2}
Phân số đã cho có dạng: \(\frac{a}{2+a+n}\) với a=1,2,3,...,2004.
UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau.
Do vậy 2+n là số nguyên tố với n nhỏ nhất
Do đó 2+n=2003 (Vì 2003 là số nguyên tố)
Vậy n=2001
Số tự nhiên nhỏ nhất chia hết cho 259 là số 0.
ta có : 2n -1 = 0
=>2n=1
=>2n =20
=>n=0
\(\frac{1}{n+3};\frac{2}{n+4};...;\frac{2002}{n+2004}\)
\(\frac{1}{\left(n+2\right)+1};\frac{2}{\left(n+2\right)+2};...;\frac{2002}{\left(n+2\right)+2002}\)
Vậy để các phân số trên tối giản thì n+2 phải nguyên tố với các số 1;2;3;4;5;...;2002
Mà n nhỏ nhất => n là số nguyên tố nhỏ nhất lớn hơn 2002 là 2003.
Vậy n là 2003