K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

tìm số tự nhiên n và k sao cho A là số nguyên tố biết A=  n4 + 42k+1 

31 tháng 8 2019

đéo biết

7 tháng 3 2016

Ta dựa vào nhận xét sau đây: Nếu \(p\) là số nguyên tố và \(p=ab\)  với a,b là các số nguyên dương thì a=1 hoặc b=1. Ta có

\(A=n^4+4\cdot2^{4k}=\left(n^2\right)^2+2\cdot n^2\cdot2^{2k+1}+\left(2^{2k+1}\right)^2-2^{2k+2}\cdot n^2\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2^{k+1}\cdot n\right)^2=\left(n^2+2^{2k+1}-2^{k+1}\cdot n\right)\left(n^2+2^{2k+1}+2^{k+1}n\right).\)

Vì A là số nguyên tố và \(n^2+2^{2k+1}-2^{k+1}\cdot n<\)\(n^2+2^{2k+1}+2^{k+1}\cdot n\).  Suy ra \(n^2+2^{2k+1}-2^{k+1}\cdot n=1\).  Suy ra  \(\left(n-2^k\right)^2+2^{2k}=1\to n=2^k,2^{2k}=1\to k=0,n=1.\)   Khi đó A=1+4=5 là số nguyên tố.

7 tháng 3 2016

^^ đang nghĩ

2 tháng 3 2016

Câu hỏi lớp 9 cậu đăng lên h.vn thì tốt hơn

2 tháng 3 2016

Minh Triều em nghĩ anh tìm các số nguyên tố là được. Tính cũng dễ hơn.

2 tháng 3 2016

Để A = n4 + 42k+1 là số nguyên tố <=> ƯC ( n4 ; 42k+1 ) = 1

=> n4 và 42k+1 chỉ có 1 ước nguyên dương

=> ( 4 + 1 )( 2k + 1 + 1 ) = 1

=> 5.( 2k + 2 ) = 1 => 10k + 10 = 1

=> 10k = - 9 => k = - 9/10

Theo đề , n và k là số tự nhiên

=> n ; k ∈ ∅

2 tháng 3 2016

Đinh Đức Hùng vậy khi n=1 và k=0

2 tháng 3 2016

đăng 1 cái là ok rồi đăng j lắm thế

Gợi ý: Áp dụng hằng đẳng thức a4+4b4=a4+4a2b2-(2ab)2=(a^2+2b^2-2ab)(a^2+2b^2+2ab)

thấy n^4+4^2k+1=n^4+4(2^k)^4 áp dụng hằng đẳng thức trên là xong

mà trong câu hỏi tương tự cũng có đó mặc dù ko có lời giải


 

30 tháng 12 2021

\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)

Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)

Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)

\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)

Vậy A là hợp số với \(n>1\)

Vậy \(n=1\)

30 tháng 12 2021

\(3,\)

Đặt \(A=n^4+n^3+1\)

\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)

Vậy \(n=2\)

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

2 tháng 11 2023

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.

5 tháng 12 2019

Với n=0 thì \(A=1\) không là số nguyên tố

Với n=1 thì \(A=3\) là số nguyên tố

Với \(n\ge2\) ta có:

\(A=n^{2018}+n^{2017}+1\)

\(=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^{672}-1\right]+n\left[\left(n^3\right)^{672}-1\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\cdot A+n\left(n^3-1\right)\cdot B+n^2+n+1\)

\(=\left(n^2+n+1\right)\cdot A'+\left(n^2+n+1\right)\cdot B'+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A'+B'+1\right)\) là hợp số với \(\forall n\ge2\)