Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(n^2+2n+12\) là scp nên
\(n^2+2n+12=k^2\)
\(\Leftrightarrow\left(n^2+2n+1\right)+11=k^2\)
\(\Leftrightarrow k^2-\left(n+1\right)^2=11\)
\(\Leftrightarrow\left(k-n-1\right)\left(k+n+1\right)=11\)
Vì k-n-1<k+n+1 nên
\(\left(k-n-1\right)\left(k+n+1\right)=1\cdot11\)
\(\hept{\begin{cases}k-n-1=1\\k+n+1=11\end{cases}\Leftrightarrow\hept{\begin{cases}k-n=2\\k+n=10\end{cases}\Leftrightarrow}\hept{\begin{cases}k=6\\n=4\end{cases}}}\)
Vậy n=4
b) Tương tự
A= n4 - 2n3 + 3n2 - 2n = (n2 - n +1)2 - 1 => A < (n2 - n + 1)2
A= (n2 - n)2 +2n2 - 2n, Nếu 2n2-2n > 0 => (n2 - n +1)2 > A > (n2 - n)2, lúc này A kẹp giữa 2 số chính phương liên tiếp => A không thể là số chính phương
Vậy 2n2-2n < 0 v 2n2 - 2n = 0 => n= 0;1
a) \(n\inƯ\left(20\right)=\left\{1;2;4;5;10;20\right\}\)
b) \(2n+1\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
=> \(n\in\left\{0;1;4\right\}\)
c) \(n\left(n+2\right)=8\)
\(\left(n+1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}n+1=3\\n+1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=2\left(TM\right)\\m=-4\left(L\right)\end{matrix}\right.\)
để\(\frac{2n+1}{3n+2}\)có giá trị nguyên => \(2n+1⋮3n+2=>3\left(2n+1\right)⋮3n+2\)
\(< =>6n+3⋮3n+2\)(1)
Ta lại có : \(3n+2⋮3n+2\)với mọi n \(=>6n+4⋮3n+2\)(2)
Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮3n+2\)<=> \(1⋮3n+2\)
Vì n là STN,do đó \(3n+2\inƯ\left(1\right)=\left(1\right)\)
Với 3n+2=1=>n=\(-\frac{1}{3}\)(loại)
Vậy k có số tự nhiên n thỏa mãn,các bài còn lại làm tương tự
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512