K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

\(b,n+2⋮n-1\)

\(\Rightarrow n-1+1⋮n-1\)

\(\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1;-1\right\}\)

vs : n - 1 =  1 => n = 2 

    n - 1 = -1 => n = 0 

29 tháng 7 2017

1) => n thuộc Ư(4)={1,2,4}

Vậy n = {1,2,4}

2) \(\frac{6}{n+1}\)

=> n+1 thuộc Ư(6)={1,2,3,6}

Ta có bảng :

n+11236
n0125

Vậy n={0,1,2,5}

3) =>n thuộc Ư(8)={1,2,4,8}

Vậy n n={1,2,4,8}

4)\(\frac{n+3}{n}=\frac{n}{n}+\frac{3}{n}=1+\frac{3}{n}\)

=> n thuộc Ư(3)={1,3}

Vậy n = {1,3}

5) \(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}=1+\frac{5}{n+1}\)

=> n+1 thuộc Ư(5) = {1,5}

Ta có : n+1=1

n = 1-1

n=0

Và n+1=5

n=5-1

n=4 

Vậy n = 4

15 tháng 10 2016

2/a)n=2

18 tháng 11 2015

a)n+8 chia hết cho n+2

=>(n+2)+6 chia hết cho n+2

=>6 chia hết cho n+2

=>n+2 thuộc Ư(6)={1;2;3;6}

+/n+2=1=>n=-1

+/n+2=2=>n=0

+/n+2=3=>n=1

n+2=6=>n=4

vì n thuộc N nên n thuộc {0;1;4}

b)

n^2+6 chia hết cho n^2+1

=>(n^2+1)+5 chia hết cho n^2+1

=>5 chia hết cho n^2+1=>n^2+1 thuộc U(5)={1;5}

+/n^2+1=1=>n^2=0=>n=0

+/n^2+1=5=>n^2=4=>n=2

=>n thuộc {0;2}

28 tháng 10 2020
  1. n=6
  2. k thể làm đc
  3. n=3
  4. n=2
  5. ko bik làm xin lỗi nhiều!
  6. n=2
  7. n=4
  8. n=1
20 tháng 11 2017

a)Vì n chia hết cho n và n+8 chia hết cho n nên 8 chia hết cho n

=>n thuộc Ư(8)

Ta có : Ư(8)={1;2;4;8}

Vậy n thuộc {1;2;4;8}

b)Ta có : n2+6=(n2+1)+5

Vì n2+1 chia hết cho n2+1 và (n2+1)+5 nên 5 chia hết cho n2+1

=>n2+1 thuộc Ư(5)

Ta có : Ư(5)={1;5}

=>n2+1 thuộc {1;5}

Nếu n2+1=1 thì n2 =1-1=0 <=> n=0

Nếu n2+1 = 5 thì n2=5-1=4 => n=22 <=> n=2

Vậy n thuộc {0;2}

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

11 tháng 12 2017

a) 8 chia hết cho 3x+2

=> 3x+2 thuộc Ư(8)={1,2,4,8}

Ta có bảng :

3x+21248
x-1/3 (loại)02/3 (loại)2

Vậy x=0 hoặc x=2

b) n+5 chia hết n-1

=> n-1+6 chia hết cho n-1

=> n-1 chia hết n-1 ; 6 chia hết cho n-1

=> n-1 thuộc Ư(6)={1,2,3,6}

Ta có bảng :

n-11236
n2347

Vậy n={2,3,4,7}