Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
a) Đặt n3 - n + 2 = k2
<=> n(n2 -1) +2 = k2
<=> (n-1)n(n+1) +2 = k2
Mà (n-1)n(n+1) là 3 STN liên tiếp => (n-1)n(n+1) chia hết cho 3
Mà không có số chính phương nào chia 3 dư 2
=> (n-1)n(n+1) +2 = k2 (vô lý)
Vậy n= {O}
Lời giải:
Đặt $n^2-n+13=t^2$ với $t$ là số tự nhiên
$\Rightarrow 4n^2-4n+52=4t^2$
$\Leftrightarrow (4n^2-4n+1)+51=4t^2$
$\Leftrightarrow (2n-1)^2+51=(2t)^2$
$\Leftrightarrow 51=(2t)^2-(2n-1)^2=(2t-2n+1)(2t+2n-1)$
Đến đây là dạng phương trình tích cơ bản rồi. Bạn lập bảng xét giá trị để tìm ra $n$ thôi.
Ta có:
n^2+2002=m^2 (m là stn)
m^2 - n^2 = 2002
(m-n).(m+n)=2002
Nếu m, n cùng tính chẵn lẻ thì m-n và m+n cùng chẵn nên m-n và m+n đều chia hết cho 2
=> (m-n).(m+n) chia hết cho 4
Mà 2002 không chia hết cho 4 => Loại
Nếu m, n ko cùng tính chẵn lẻ thì m-n và m+n đều lẻ => (m-n).(m+n) là số lẻ
Mà 2002 là chẵn => Loại
Vậy ko tồn tại n thỏa mãn đề bài
**** CHO MIH NHÉ
Đặt n^2 + 2002 = a^2
=> 2002 = a^2 - n^2
=> 2002 = ( a - n )(a + n )
Đặt P = n4 + n3 + n2 + n + 1
Với n = 1 => A = 3 => loại
Với n \(\ge\)2 ta có:
(2n2 + n - 1) < 4A \(\le\)(2n2 + n)2
=> 4A = (2n2 + n)2
Vậy: n = 2 thỏa mãn đề bài
*P/s: Mik ko chắc*
Đáp án sai mà mn
Thay n=2 ta có
\(n^4+n^3+n^2+n+1\)\(=31\): ko là số chính phương