K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

Nghĩ cái này nó cũng tựa tựa như vậy,ko biết có dùng được không:V

\(P=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}}\)

\(\dfrac{P}{3^{1111}}=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{3^{1111}\left(-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}\right)}\)

\(\dfrac{-P}{3^{1111}}=\dfrac{-3^{1111}+6^{1111}-9^{1111}+12^{1111}-15^{1111}+18^{1111}-21^{1111}+24^{1111}}{-3^{1111}+6^{1111}-9^{1111}+12^{1111}-15^{1111}+18^{1111}-21^{1111}+24^{1111}}=1\)

\(-P=1.3^{1111}=3^{1111}\Leftrightarrow P=-3^{1111}\)

15 tháng 11 2017

\(P=\dfrac{3^{1111}-6^{1111}+9^{1111}-12^{1111}+15^{1111}-18^{1111}+21^{1111}-24^{1111}}{-1+2^{1111}-3^{1111}+4^{1111}-5^{1111}+6^{1111}-7^{1111}+8^{1111}}\)

\(P=\dfrac{3^{1111}\left(1-2^{1111}+3^{1111}-4^{1111}+5^{1111}-6^{1111}+7^{1111}-8^{1111}\right)}{-1\left(1-2^{1111}+3^{1111}-4^{1111}+5^{1111}-6^{1111}+7^{1111}-8^{1111}\right)}\)

\(P=\dfrac{3^{1111}}{-1}=-3^{1111}\)

biết 1 cách :V thánh nào làm nốt cách kia đi ạ :V

17 tháng 2 2017

1686 nhé!

Violympic phải không?

17 tháng 2 2017

tick cho mk nhé!

17 tháng 2 2017

trong 4 số  1686; 259; 1111; 197:

số 1686 là tổng của 4 số tự nhiên liên tiếp

K nha!

Kb nha!

17 tháng 4 2020

Ta có : 66661111 = ....6

11111111 = ....1

665555 = ...6

=> Chữ số hàng đơn vị của A là : 

A = 66661111 + 11111111 + 665555 = ....6 + ....1 + ....6 = ....3

17 tháng 4 2020

\(A=6666^{1111}+1111^{1111}+66^{5555}\)
\(6666^{1111}\)có tận cùng là 6
\(1111^{1111}\)có tận cùng là 1
\(66^{5555}\)có tận cùng là 6
\(\Rightarrow6666^{1111}+1111^{1111}+66^{5555}\)có tận cùng là 3
\(\Rightarrow A=6666^{1111}+1111^{1111}+66^{5555}\)có chữ số hàng đơn vị là 3
Chúc bạn học tốt!

28 tháng 9 2023

Để tìm 3 chữ số tận cùng của dãy số 1-11+111-1111+...+11..11 (2013 chữ số), chúng ta có thể tính từng số hạng trong dãy và cộng chúng lại.

Đầu tiên, chúng ta nhận thấy rằng dãy này có một quy luật. Mỗi số hạng trong dãy có số chữ số tăng dần từ 1 đến 2013, và mỗi số hạng sau đều là số hạng trước đó nhân -1.

Với quy luật này, chúng ta có thể tính từng số hạng và cộng chúng lại:

1 - 11 + 111 - 1111 + ... + 11..11

Để tính số hạng thứ i, chúng ta nhân số 1 với 10^(i-1), sau đó nhân kết quả với -1^(i+1). 

Ví dụ:
- Số hạng thứ 1: 1 * 10^(1-1) * (-1^(1+1)) = 1 * 1 * 1 = 1
- Số hạng thứ 2: 1 * 10^(2-1) * (-1^(2+1)) = 1 * 10 * -1 = -10
- Số hạng thứ 3: 1 * 10^(3-1) * (-1^(3+1)) = 1 * 100 * 1 = 100
- ...

Tiếp tục như vậy cho đến số hạng thứ 2013. Sau đó, chúng ta cộng tất cả các số hạng lại với nhau:

1 - 10 + 100 - 1000 + ... + (2013 số 1)

Chúng ta chỉ quan tâm đến 3 chữ số tận cùng, nên chúng ta chỉ cần tính tổng các số hạng có 3 chữ số tận cùng.

Để tính tổng các số hạng có 3 chữ số tận cùng, chúng ta thấy rằng các số hạng có chữ số tận cùng khác nhau sẽ có tổng bằng 0. Vì vậy, chúng ta chỉ cần tính tổng các số hạng có chữ số tận cùng là 1.

Có 2013 số hạng trong dãy, và chúng ta cần tính tổng các số hạng có chữ số tận cùng là 1. Vậy tổng này sẽ là 2013.

Vậy, 3 chữ số tận cùng của dãy số 1-11+111-1111+...+11..11 (2013 chữ số) là 2013.

1 tháng 9 2015

Ta thấy: 

12=3.4

1122=33.34

Từ đó suy ra 111.....111222222....22=33........3x333........34

                                                      |(50 số 3)|x|49 số 3 và 1 số 4

1 tháng 9 2015

=33333.....333x3......3333334

3 tháng 8 2017

Ta có : 1111...1 - n \(⋮\) 9

Vì 1111...1 và n đều có số dư bằng nhau

=> 1111...1-n\(⋮\) 9

Mik giải cho rồi nha 0o0^^^Nhi^^^0o0

3 tháng 8 2017

\(1111...1111-n\) (n chữ số 1)
Xét:

Tổng các chữ số của \(111.....1111\) là :

\(1+1+1+...+1\) (n chữ số 1)

\(=1.n=n\)

Ta có: \(n-n=0⋮9\rightarrowđpcm\)