Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
Vì
Mà 4n - 1 chia 4 dư 3; do
a) n + 2 chia hết cho n - 1
=> n - 1 + 3 chia hết cho n - 1
Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1
Mà n thuộc N => n - 1 > hoặc = -1
=> n - 1 thuộc {-1 ; 1 ; 3}
=> n thuộc {0 ; 2 ; 4}
Những câu còn lại lm tương tự
Giải:
a) \(n+2⋮n-1\)
\(\Rightarrow\left(n-1\right)+3⋮n-1\)
\(\Rightarrow3⋮n-1\)
\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)
+) \(n-1=1\Rightarrow n=2\)
+) \(n-1=-1\Rightarrow n=0\)
+) \(n-1=3\Rightarrow n=4\)
+) \(n-1=-3\Rightarrow n=-2\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
b) \(2n+7⋮n+1\)
\(\Rightarrow\left(2n+2\right)+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-3\Rightarrow n=-4\)
Vậy \(n\in\left\{0;-2;2;-4\right\}\)
Vì 3 n chia hết cho (5-2n)
=>2.3n+3(5-2n)=15 chia hết cho 5-2n
=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}
Mặt khác 5-2n nhỏ hơn hoặc bằng 5
5-2n thuộc {-15,-5,-3,-1,1,3,5}
=>N thuộc { 10,5,4,3,2,1,0}
Vì 3n chia hết cho 5-2n
=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n
=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}
Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5
=>5-2n€{-15,-5,-3,-1,1,3,5}
=>N€{10,5,4,3,2,1,0}
a) \(3n+19⋮n+1\)
\(\Rightarrow\)\(3\left(n+1\right)+16⋮n+1\)
mà \(3\left(n+1\right)⋮n+1\)\(\Rightarrow\)\(16⋮n+1\)
\(\Rightarrow\)\(n+1\in\left\{1,-1,2,-2,4,-4,8,-8,16,-16\right\}\)
\(\Rightarrow n\in\left\{0,-2,1,-3,3,-5,7,-9,15,-17\right\}\)
b) \(2n+7⋮n+2\)
\(\Rightarrow2\left(n+2\right)+3⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\Rightarrow3⋮n+2\)
\(\Rightarrow n+2\in\left\{1,3,-1,-3\right\}\)
\(\Rightarrow n\in\left\{-1,1,-3,-5\right\}\)
c)\(6n+39⋮2n+1\Rightarrow3\left(2n+1\right)+36⋮2n+1\)
mà\(3\left(2n+1\right)⋮2n+1\)\(\Rightarrow36⋮2n+1\)
\(\Rightarrow2n+1\in\left\{1,-1,2,-2,3,-3,4,-4,6,-6,9,-9,12,-12,18,-18,36,-36\right\}\)
\(\Rightarrow2n\in\left\{0,-2,1,-3,2,-4,3,-5,5,-7,8,-10,11,-13,17,-19,35,-37\right\}\)
\(\Rightarrow\)\(n\in\left\{0,-1,1,-2,4,-5\right\}\)
a) Ta có: n + 6 \(⋮\)n
Do n \(⋮\)n => 6 \(⋮\)n
=> n \(\in\)Ư(6) = {1; 2; 3; 6}
b)Ta có: (n + 9) \(⋮\)(n + 1)
<=> [(n + 1) + 8] \(⋮\)(n + 1)
Do (n + 1) \(⋮\)(n + 1) => 8 \(⋮\)(n + 1)
=> (n + 1) \(\in\)Ư(8) = {1; 2; 4; 8}
=> n \(\in\){0; 1; 3; 7}
c) Ta có: n - 5 \(⋮\)n + 1
<=> (n + 1) - 6 \(⋮\)n + 1
Do (n + 1) \(⋮\)n + 1 => 6 \(⋮\)n + 1
=> n + 1 \(\in\)Ư(6) = {1; 2; 3; 6}
=> n \(\in\){0; 1; 2; 5}
d) Ta có: 2n + 7 \(⋮\)n - 2
=> 2(n- 2) + 11 \(⋮\)n - 2
Do 2(n - 2) \(⋮\)n - 2 => 11 \(⋮\)n - 2
=> n - 2 \(\in\)Ư(11) = {1; 11}
=> n \(\in\){3; 13}
a)
\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n-1=1\Rightarrow n=2\)
\(n-1=2\Rightarrow n=3\)
\(n-1=4\Rightarrow n=5\)
Vậy \(n\in\left\{2;3;5\right\}\)
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
các câu trên dễ rồi tự giải nhé mk chỉ giải của d thôi
d, n^2 + 7 chia hết cho n+1 (1)
n+1 chia hết cho n+1
=> (n-1)(n+1) chia hết cho n+1
=> n^2 -1 chia hết cho n+1 (2)
từ (1) và (2)
=> n^2+7 - n^2 +1 chia hết cho n+1
=> 8 chia hết cho n+1
=> n+1 thuộc ước của 8
=> n+1 ={ 1,2,4.-1.-2.-4}
=> n={ 0,1,3,-2,-3,-5}
thử lại nhé ( vì đây là giải => nên phải thử lại nha)
n+7\(⋮n+2\)
=> (n+7)-(n+2)\(⋮n+2\)
=> 5 \(⋮n+2\)
=>n+2\(\inƯ\left(5\right)=\left\{1;5\right\}\)
rồi tự làm típ
mấy câu khác tương tự
vì đề là Tìm số tự nhiên n nên chỉ tìm số dương thui nha