Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết, ta chứng minh rằng với mọi số n lớn hơn hoặc bằng 5, điều kiện của đề bài không thỏa mãn.
Thật vậy, với \(n\ge5\), ta có:
+ Nếu n = 5k thì n + 15 chia hết 5. Vậy n + 15 là hợp số.
+ Nếu n = 5k + 1 thì n + 9 chia hết cho 5. Vậy n + 9 là hợp số.
+ Nếu n = 5k + 2 thì n + 3 chia hết cho 5. Vậy n + 3 là hợp số.
+ Nếu n = 5k + 3 thì n + 7 chia hết cho 5. Vậy n + 7 là hợp số.
+ Nếu n = 5k + 4 thì n + 1 chia hết cho 5. Vậy n + 1 là hợp số.
Vậy n < 5.
Để n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố thì n phải là số chẵn. Vì nếu n là số lẻ thì các số trên là số chẵn lớn hơn 2, và là hợp số.
Vậy n = 2 hoặc n = 4.
Với n = 2, ta thấy ngay n + 7 = 2 + 7 = 9, là hợp số.
Với n = 4, ta có các số 5, 7, 11, 13, 17, 19 đều là số nguyên tố.
Vậy số cần tìm là n = 4.
Thử n đến 3 không thỏa mãn
* n=4 thì các số là các số nguyên tố
*Xét n >4 thì các số đó đều lớn hơn 5
Xét các số dư khi chia n cho 5
+ Dư 1 thì n+ 9\(⋮\)5n+9\(⋮\)5
+Dư 2 thì n+13 \(⋮\)5n+13\(⋮\)5
+ Dư 3 thì n+7 \(⋮\)5n+7\(⋮\)5
+ Dư 4 thì n+1 \(⋮\)5n+1\(⋮\)5
+ Dư 0 thì n+15\(⋮\)5n+15\(⋮\)5
Không TM trường hợp nào cả
=>n = 4 là giá trị cần tìm
a) \(2^n+22\)
Với \(n\ge1\)thì \(2^n⋮2,22⋮2\)khi đó \(2^n+22⋮2\)mà \(2^n+22>2\)nên khi đó \(2^n+22\)là hợp số.
Với \(n=0\): \(2^n+22=23\)thỏa mãn.
Vậy \(n=0\).
b) \(13n\)
Với \(n\ge2\)thì \(13n⋮13\)mà \(13n>13\)nên là số hợp số.
\(n=1\)thỏa mãn.
TL :
Xét hai trường hợp
\(\cdot n=1\Leftrightarrow2019^0+6=1+6=7\)( thỏa mãn )
\(\cdot n>0\Leftrightarrow\hept{\begin{cases}2019^n⋮3\\6⋮3\end{cases}\Rightarrow}\left(2019^n+6\right)⋮3\)
Mà \(2019^n+6>3\)nên\(2019^n+6\)là hợp số ( loại )
Vậy \(n=0\)
Bài giải
Vì \(2019^n\) có chữ số tận cùng là 0 ; 1 hoặc 9
=> \(2019^n+6\) có chữ số tận cùng là 6 ; 7 hoặc 5
Mà \(2019^n+6>6\) và số nguyên tố lớn hơn 2 đều là số lẻ
\(\Rightarrow\text{ }\) Để \(2019^n+6\) là số nguyên tố thì chữ số tận cùng của \(2019^n+6\)phải bằng 7
\(\Leftrightarrow\text{ }2019^n=1\)\(\Leftrightarrow\text{ }n=0\)
Vậy để \(2019^n+6\) là số nguyên tố thì \(n=0\)
Một bể đựng nước dạng hình hộp chữ nhật có chiều cao 2,8m đáy là một hình vuông cạnh 4m. Hiện tại 85% bể đang chứa nước . Hỏi:
a. Số nước bể đang chứa là bao nhiêu lít nước ( biết 1dm3 = 1 lít )
b. Chiều cao mực nước trong bể là bao nhiêu mét ?
Tìm số tự nhiên n nhỏ nhất sao cho:
n ; n+ 2 ; n+ 6 là các số nguyên tố
Trình bày cả cách giải ra giúp mình nhé
Ta có : n ; n + 2 ; n + 6 là số nguyên tố
=> n = 1
Ta có : 1 + 2 = 3 đúng
1 + 6 = 7 đúng
Vậy n = 1
Ta có : n ; n + 2 ; n + 6 là số nguyên tố
=> n = 1
Ta có : 1 + 2 = 3 đúng
1 + 6 = 7 đúng
Vậy n = 1