Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n^2+8}{n+8}=\frac{n^2+8n-8n-64+72}{n+8}=n-8+\frac{72}{n+8}\)
\(A\)là số tự nhiên suy ra \(\frac{72}{n+8}\)là số tự nhiên suy ra \(n+8\inƯ\left(72\right)\)mà \(n\inℕ\Rightarrow n+8\ge8\)
suy ra \(n+8\in\left\{8,9,12,18,24,36,72\right\}\Leftrightarrow n\in\left\{0,1,4,10,16,28,64\right\}\).
Thử lại ta đều thấy thỏa mãn.
ĐKXĐ : \(n+8\ne0\Rightarrow n\ne-8\)
Để \(\frac{n^2+8}{n+8}\)là số tự nhiên \(\Rightarrow\left(n^2+8\right)⋮\left(n+8\right)\)
n + 8 2 n + 8 n - n + 8 n - n 2
Để \(\left(n^2+8\right)⋮\left(n+8\right)\)\(\Rightarrow n^2-n=0\)
\(\Leftrightarrow n\left(n-1\right)=0\Rightarrow n=0\)hoặc \(n-1=0\Leftrightarrow n=1\)( TM )
Tô Hoài An chỗ đặt tính chia bạn làm chưa đúng. Phải ra thương là (n-8), dư 72.
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
Ta có \(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì \(\hept{\begin{cases}n^2-6n+10=1\\n^2+6n+10=1\end{cases}}\)
Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)
Có \(n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\)
\(\Rightarrow n=3\)
Vậy với n = 3 thì \(\left(n^2-8\right)^2+36\) là số nguyên tố
\(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì
\(n^2+6n+10\)là số nguyên tố và \(n^2-6n+10=1\)
\(\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
\(A=\frac{x^2+8}{x+8}=\frac{x^2+8x-8x-16}{x+8}+\frac{24}{x+8}=x-8+\frac{24}{x+8}\in N\)
x+ 8 thuộc U(24 ) = {8;12;24} vì x+8>/8
x+8 =8 => x =0 => A =-8 +3 <0 loại
x +8 =12 => x =4 => A =4 -8 + 2 =-2<0 loại
x+8 =24 => x =16 => A =16 -8 +1 = 9 (TM)
Vậy x = 16
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)