Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n^2-3n=m^2\) với \(m\in N\)
\(\Rightarrow4n^2-12n=4m^2\)
\(\Rightarrow4n^2-12n+9=4m^2+9\)
\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)
\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)
2n-3-2m | -9 | -3 | -1 | 1 | 3 | 9 |
2n-3+2m | -1 | -3 | -9 | 9 | 3 | 1 |
n | -1 | 0 | -1 | 4 | 3 | 4 |
m | 2 | 0 | -2 | 2 | 0 | -2 |
Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
- Với \(n=0\Rightarrow3^n+3=4\) là SCP (thỏa mãn)
- Với \(n=1\Rightarrow3^n+3=6\) ko là SCP
- Với \(n>1\Rightarrow n\ge2\) \(\Rightarrow3^n⋮9\)
Mà \(3⋮̸9\Rightarrow3^n+3⋮̸9\)
\(\Rightarrow3^n+3\) chia hết cho 3 mà ko chia hết cho 9
\(\Rightarrow3^n+3\) ko thể là SCP với \(n>1\)
Vậy \(n=0\) là giá trị duy nhất thỏa mãn yêu cầu đề bài
Vì A \(\inℕ\)=> 3A \(\in N\)
Khi đó 3A = \(\frac{3n+27}{3n+2}=\frac{3n+2+25}{3n+2}=1+\frac{25}{3n+2}\)
3A \(\in N\)<=> 25 \(⋮3n+2\Leftrightarrow3n+2\inƯ\left(25\right)\)
=> 3n + 2 \(\in\left\{1;5;-1;-5;25;-25\right\}\)
<=> n = 1 (vì n \(\inℕ\))
Thay n = 1 vào A => A = 2 (TM)
Vậy n = 1 là giá trị phải tìm
để a là số tự nhiên thì n+9 chia hết cho 3n+2
nên 3.(n+9) cũng chia hết cho 3.n+2
suy ra 3n+27 chia hết cho 3n+2
3n+2+25 chia hết cho 3n+2
mà 3n+2 chia hết cho 3n+2 nên để 3n+2+25 là số tự nhiên
thì 25 phải chia hết cho 3n+2
suy ra 3n+2 thuộc tập Ư(25)={1,5,25} (n là số tự nhiên)
3n+2=1.n=-1/3 ko thỏa mãn n là số tự nhiên
3n+2=5,n=1,thỏa mãn
3n+2=25,n=25/3 ko thỏa mãn n là số tự nhiên
vậy n=1 thì phân số A =n+9/3n+2 là STN