Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4n+9⋮2n-1\Leftrightarrow11⋮2n-1\Leftrightarrow2n-1\in\left\{1;11\right\}\)
\(\Leftrightarrow n\in\left\{1;6\right\}\)
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
2n +1 chia hết cho 2n + 1
suy ra 2 ( 2n + 1 ) chia hết cho 2n + 1
= 4n + 2 chia hết cho 2n + 1
suy ra ; ( 4n + 3 ) - ( 4n + 2 ) chia hết cho 2n + 1
= 1 chia hết cho 2n + 1
=> 2n + 1 thuộc vào Ư( 1 ) = 1
=> n = 1
Tìm số tự nhiên n để 4n+3 chia hết cho 2n+1
Giải:Ta có:4n+3=4n+2+1=2(2n+1)+1
Để 4n+3 chia hết cho 2n+1 thì 1 phải chia hết cho 2n+1
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1,1\right\}\).Vì n là số tự nhiên nên \(n\ge0\) nên 2n+1\(\ge1\)
Nên chỉ có 2n+1=1 thỏa mãn nên n=0 thỏa mãn
n + 5 : hết cho n - 2
=> n - 2 + 7 : hết cho n - 2
=> 7 : hết cho n - 2
=> n - 2 thuộc { 1 ; 7} tự tính n
2n + 9 : hết cho n + 1
=> (2n+9) - 2(n+1) : hết cho n + 1
=> 7 : hết cho n + 1
tương tự câu 1
2n + 1 : hêt cho 6-n
=> (2n+1) + 2(6 - n) : hết cho 6 - n
=> 13 : hết cho 6 - n
tương tự câu 1,2
3n + 1 : hết ccho 11 - 2n
=> 2(3n + 1) + 3(11-2n) : hết cho 11 - 2n
=> 35 : hết cho 11 - 2n
tượng tự 1,2,3
3n + 5 : hết cho 4n + 2
=> 4(3n+5) - 3(4n+2) : hết cho 4n + 2
=> 14 : hết cho 4n + 2
tương tự 1,2,3,4
4n+10 chia hết cho 2n+1
=>
4n+10=
( 2n+1)x2+8
=>(2n+1)x2+8 chia hết cho 2n+1
ma (2n+1)x2 chia hết cho 2
=>8 chia hết cho 2n+1
mà 8 chia hết cho:1;2;4;8
=>vay n=0
4n + 10 chia hết cho 2n+1 thì 2(4n +10) cũng chia hết cho 4(2n+1)
xét hiệu ta có 8n+20 - 8n-4 = 16
vì 4n+10 chia hết cho 2n+1 nên 2(4n+10) chia hết cho 2n+1
4(2n+1) chia hết cho 2n+1
=> 16 chia hết cho 2n+1
vậy 2n+1 thuộc ước của 16
4n-4\(⋮\)2n-1
Ta có:2n-1\(⋮\)2n-1
=>2.(2n-1)\(⋮\)2n-1
=>4n-2\(⋮\)2n-1(1)
Theo bài ta có:4n-4\(⋮\)2n-1(2)
Từ (1) và(2) suy ra (4n-2)-(4n-4)\(⋮\)2n-1
=>4n-2-4n+4\(⋮\)2n-1
=>2\(⋮\)2n-1
=>2n-1\(\in\)Ư(2)={1;2}
+2n-1=1=>2n=1+1=>2n=2=>n=2:2=>n=1\(\in\)N
+2n-1=2=>2n=2+1=>2n=3=>n=3:2=>n=1,5\(\in\)\(\varnothing\)
Vậy n=1
vì 4n+9 chia hết cho 2n+1
suy ra 2(2n+1) chia hết cho 2n+1
suy ra 4n+2 chia hết cho 2n+1
suy ra 4n+9-4n-2 chia hết cho 2n+1
7 chia hết cho 2n+1
vậy 2n+1 thuộc ước của 7 bằng 1,7(n là số tự nhiên)
(đến đay bạn tự tính nhé nhớ tích cho mình nha
Vì 4n+9 chia hết cho 2n+1
=>2.(2n+1)7 chia hết cho 2n+1
Mà 2n+1 chia hết 2n+1
=>2(2n+1) chia hết cho 2n+1
=>7 chia heetscho 2n+1
=>2n+1 thuộc U(7)={1;7}
Ta có bảng:
Vậy....
HT