K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:

Với $k\in\mathbb{N}$.

Nếu $n=3k$ thì:

$2^{2n}+2^n+1=2^{6k}+2^{3k}+1=64^k+8^k+1$

$\equiv 1^k+1^k+1\equiv 3\pmod 7$ (loại)

Nếu $n=3k+1$ thì:

$2^{2n}+2^n+1=2^{6k+2}+2^{3k+1}+1$

$=4.64^k+2.8^k+1\equiv 4+2+1\equiv 7\equiv 0\pmod 7$

Nếu $n=3k+2$ thì:

$2^{2n}+2^n+1=2^{6k+4}+2^{3k+2}+1$

$=16.64^k+4.8^k+1\equiv 16+4+1\equiv 0\pmod 7$

Vậy chỉ cần $n$ không chia hết cho $3$ thì $2^{2n}+2^n+1\vdots 7$

 

18 tháng 2 2021

#)Giải :

 

Giả sử cả A và B đều chia hết cho 5 

=> a - b chia hết cho 5 

=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5 

=> 22n + 1 chia hết cho 5 

Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra

=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5

=> đpcm

15 tháng 2 2022

-Ta có: \(2^{4n}=16^n=\overline{...6}\)

\(\Rightarrow2^{4n}.4=\overline{...6}.4\)

\(\Rightarrow2^{4n+2}=\overline{...4}\)

\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)

\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)

\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)

\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)

-Như vậy, thì \(A⋮5\) hay \(B⋮5\).

-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.

16 tháng 2 2022

-Chứng minh hai số đó không thể cùng chia hết cho 5:

-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.

-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5. 

\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)

-Ta có: \(2^{2n}=4^n\).

+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.

+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)

\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).

\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.

\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.

\(\Rightarrow B\) không chia hết cho 5.

-Vậy.................

11 tháng 7

bạn à :))) 3 năm rồi ấy

 

31 tháng 5 2017

ta có:

n4+3n3-22n2+6n : n2+2 = n2+3n-24 dư 48

=> n4+3n3-22n2+6n = (n2+3n-24) + \(\frac{48}{n^2+2}\)

=> n2+2 thuộc Ư(48)  = {-1;-2;-3;-4;-6;-8;-12;-16;-24;-48;1;2;3;4;6;8;12;16;24;48}   (n2+2 luôn dương)

=> n= {2-2; 3-2; 4-2;.........} = {0; 1; 2; 3; 4; 6;......... }

mà A có giá trị nguyên nên n2 = {0; 1; 4}

=> n = {0; ±1; ±2}

5 tháng 1 2015

Câu 1 thì mình biết làm đó.

Vì 2013 chia 7 dư 4 nên 20132012 chia 7 cũng dư 4

 

30 tháng 8 2016

chắc là 2 đấy

7 tháng 7 2021

A = \((2n)^{3} - 3n + 1 \)

\(\Leftrightarrow\) A = \((2n)^{3} - 2n - n + 1\)

\(\Leftrightarrow\) A = \(2n (n^{2} - 1) - ( n-1)\)

\(\Leftrightarrow\) A = \(2n(n - 1)(n+1)-(n-1)\)

\(\Leftrightarrow\) A = \((2n^{2} +2n-1)(n-1)\)

Vì A là số nguyên tố nên n - 1 = 1

\(\Rightarrow\) n = 2

 

giúp e vs .e đang cần gấp