K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:
$A=1^n+2^n+3^n+4^n=1+2^n+3^n+4^n$

Nếu $n=4k$ thì:

$A=1+2^n+3^n+4^n=1+2^{4k}+3^{4k}+4^{4k}$

$=1+16^k+81^k+16^{2k}$

$\equiv 1+1+1+1\equiv 4\pmod 5$

---------------

Nếu $n=4k+1$

$A=1+2^n+3^n+4^n=1+2^{4k+1}+3^{4k+1}+4^{4k+1}$

$=1+16^k.2+81^k.3+16^{2k}.4$

$\equiv 1+1^k.2+1^k.3+1^k.4\equiv 10\equiv 0\pmod 5$

Nếu $n=4k+2$

$A=1+2^n+3^n+4^n=1+2^{4k+2}+3^{4k+2}+4^{4k+2}$

$=1+16^k.2^2+81^k.3^2+16^{2k}.4^2$

$\equiv 1+1^k.2^2+1^k.3^2+1^{2k}.4^2\equiv 30\equiv 0\pmod 5$

Nếu $n=4k+3$

$A=1+2^n+3^n+4^n=1+2^{4k+3}+3^{4k+3}+4^{4k+3}$

$=1+16^k.2^3+81^k.3^3+16^{2k}.4^3$

$\equiv 1+1^k.2^3+1^k.3^3+1^{2k}.4^3\equiv 100\equiv 0\pmod 5$

Vậy chỉ cần $n$ không chia hết cho $4$ thì $1^n+2^n+3^n+4^n$ sẽ chia hết cho $5$

11 tháng 11 2023

Có: 1n + 2n + 3n + 4n

= (1 + 2 + 3 + 4)n

= 10n

Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)

Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.

11 tháng 11 2023

Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.

Ta có: 1n + 2n + 3n + 4n = 10n

Để 10n chia hết cho 5, ta cần n chia hết cho 5.

Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.

 ⇒ Các số tự nhiên n chia hết cho 5.

--thodagbun--

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

13 tháng 2 2016

đây là toán lớp 6 nha bn

a mk chịu

b

vì 2n-3 : 2n+2

suy ra 2(2n-3) : 2n+2

       4n-6: 2n+2

mà 2(2n+2):2n+2

     4n+4  :2n+2

    4n+ 4 -(4n-6) : 2n+2

.còn lại tự tính

30 tháng 11 2017

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)

3 tháng 12 2016

a, n=1,3,5,7,9

b, n=2,7

c, n=?

d,n=7

2 tháng 11 2016

a) \(4n-5⋮2n-1\)

\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

+) \(2n-1=1\Rightarrow2n=2\Rightarrow n=1\) ( chọn )

+) \(2x-1=-1\Rightarrow2n=0\Rightarrow n=0\) ( chọn )

+) \(2n-1=3\Rightarrow2n=4\Rightarrow n=2\) ( chọn )

+) \(2n-1=-3\Rightarrow n=-1\) ( loại )

Vậy \(n\in\left\{1;0;2\right\}\)

3 tháng 11 2016

Cho mk hỏi nha cái dấu \(⋮\) là j thế

DD
4 tháng 7 2021

a) \(n^3+2n^2+3n+5=n^3-n^2+3n^2-3n+6n-6+11=\left(n-1\right)\left(n^2+3n+6\right)+11\)

chia hết cho \(n-1\)tương đương \(11⋮\left(n-1\right)\Leftrightarrow n-1\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)(vì \(n\)nguyên)

\(\Leftrightarrow n\in\left\{-10,0,2,12\right\}\)

b) \(4n^2+2n+1=4n^2-2n+4n-2+3=\left(2n-1\right)\left(2n+2\right)+3\)chia hết cho \(2n-1\)tương đương với \(3⋮\left(2n-1\right)\Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)(vì \(n\)nguyên) 

\(\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).

.

11 tháng 12 2017

mk biết kết quả là 1;3;4;5 rồi xin cách lm thui