K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

Phân tích thành nhân tử bạn à. 3n-5 <4n+5 nên 3n-5=1. => n=2

NV
10 tháng 8 2021

Đặt \(N=12n^2-5n-25=\left(3n-5\right)\left(4n+5\right)\)

Do n tự nhiên nên \(\left(4n+5\right)-\left(3n-5\right)=n+10>0\Rightarrow4n+5>3n-5\)

N luôn có ít nhất 2 ước số phân biệt là \(3n-5\) và \(4n+5\)

\(\Rightarrow\) N nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}3n-5=1\\4n+5\text{ là số nguyên tố}\end{matrix}\right.\)

\(3n-5=1\Rightarrow n=2\)

Khi đó \(4n+5=13\) là số nguyên tố (thỏa mãn)

Vậy \(n=2\)

22 tháng 8 2021

Cảm ơn thầy ạ.

 

9 tháng 3 2019

\(12n^2-5n-25=\left(3x-5\right)\left(4x+5\right)\)

Ta có: \(\left(3x-5\right)\left(4x+5\right)⋮3x-5;4x+5\)

Ta có: \(\left(3x-5\right)\left(4x+5\right)\) có 2 ước,nên 1 ước sẽ phải là 1 và 1 ước sẽ là chính số nguyên tố đó

Nhận xét: \(4x+5>0\Rightarrow3x-5=1\Rightarrow x=2\)

Vậy...

17 tháng 11 2019

n = 1 

mình nghĩ z

17 tháng 11 2019

Ta có:

A=3n3-5n2+3n-5

   =n2(3n-5)+(3n-5)

   =(n2+1)(3n-5)

Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng gồm 1 vfa chình nó

nên A là số nguyên tố thì \(\orbr{\begin{cases}n^2+1=1\\3n-5=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=\frac{5}{3}\end{cases}}\)

Mà n là số tự nhiên nên n=2

Vậy n=2 thì A là số nguyên tố.

Em mới lớp 7 nên sai thì đừng k sai cho em nhé!!!

AH
Akai Haruma
Giáo viên
18 tháng 1 2022

Lời giải:

a. 

$12n^2-5n-25=(3n-5)(4n+5)$

Để $12n^2-5n-25$ là số nguyên tố thì một trong hai thừa số $3n-5, 4n+5$ phải bằng $1$ và số còn là là số nguyên tố. 

Mà $3n-5< 4n+5$ với mọi $n\in\mathbb{N}$ nên $3n-5=1$

$\Rightarrow n=2$

Thử lại thấy $12n^2-5n-25=13$ là snt (thỏa mãn)

b.

Với $n=1$ thì $n^{2021}+n^{22}+1=3$ là snt

Với $n\geq 2$ thì:

$n^{2021}+n^{22}+1=(n^{2021}-n^2)+(n^{22}-n)+(n^2+n+1)$

$=n^2(n^{2019}-1)+n(n^{21}-1)+(n^2+n+1)$

$=n^2[(n^3)^{673}-1]+n[(n^3)^7-1)]+(n^2+n+1)$

$=n^2(n^3-1).A+n(n^3-1).B+(n^2+n+1)$

$=n^2(n-1)(n^2+n+1).A+n(n-1)(n^2+n+1)B+(n^2+n+1)$

$=(n^2+n+1)[n^2(n-1)A+n(n-1)B+1]$

Trong đó, $A,B$ chỉ là ký hiệu thay thế cho biểu thức dài khi khai triển HĐT.

Dễ thấy $n^2+n+1>2$ với mọi $n\geq 2$ nên để biểu thức là snt thì:

$n^2(n-1)A+n(n-1)B+1=1$

$\Rightarrow n^2(n-1)A+n(n-1)B=0$ (điều này vô lý với $n\geq 2; A, B>2$ với mọi $n\geq 2$)

Do đó $n=1$ là đáp án duy nhất/

a)Ta có : \(12n^2-5n-25\)

\(=\left(4n+5\right)\left(3n-5\right)\)

Vì \(12n^2-5n-25\)là số nguyên tố

\(\Rightarrow\)Nó chỉ có 2 ước nguyên dương là 1 và chính nó

mà \(4n+5>3n-5\forall n\inℕ\)

\(\Rightarrow3n-5=1\)

\(\Rightarrow n=2\)

Thử lại : \(\left(2.4+5\right)\left(2.3-1\right)=13\)(là số nguyên tố)

Vậy \(n=2\)

b)Tương tự nhé cậu , ta tìm được \(n=0\)

17 tháng 7 2018

a)   \(A=12n^2-5n-25\)

\(=12n^2+15n-20n-25\)

\(=3n\left(4n+5\right)-5\left(4n+5\right)\)

\(=\left(3n-5\right)\left(4n+5\right)\)

Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó

nên  A là số nguyên tố thì:   \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)

do n là số tự nhiên nên \(n=2\)

thử lại:  n=2  thì  A = 13 là số nguyên tố

Vậy n = 2

17 tháng 7 2018

b)  \(B=8n^2+10n+3\)

\(=8n+6n+4n+3\)

\(=2n\left(4n+3\right)+\left(4n+3\right)\)

\(=\left(2n+1\right)\left(4n+3\right)\)

Để B là số nguyên tố thì:   \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)

Do n là số tự nhiên nên  n = 0

Thử lại: \(n=0\)thì    \(B=3\)là số nguyên tố

Vậy  \(n=0\)