Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Gọi ƯCLN(4n + 3;5n+4) = d
=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{4n+3}{5n+4}\)là phân số tối giản
d) Gọi ƯCLN(n+1;2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\)là phân số tối giản
f) Gọi ƯCLN(3n + 2;5n + 3) = d
=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)
=> d = 1
=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+2}{5n+3}\)là phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> \(\frac{n+3}{n+4}\)là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> \(\frac{3n+3}{9n+8}\)phân số tối giản
a, Vì (n+3) ⋮ (n+3) nên để (n+8) ⋮ (n+3) thì: [(n+8) - (n+3)] ⋮ (n+3) hay 5 ⋮ (n+3), Suy ra: n+3 ∈ {1;5}
Vì n + 3 ≥ 3 nên n + 3 = 5 => n = 2
Vậy n = 2
b, Vì 3(n+4) ⋮ (n+4) nên để (16 - 3n) ⋮ (n+4) thì: [(16 - 3n)+3(n+4)] ⋮ (n+4) hay 28 ⋮ (n+4)
Suy ra: n+4 ∈ {1;2;4;7;14;28}
Vì 0 ≤ n ≤6 nên 4 ≤ n+4 ≤ 10.
Từ đó ta có: n+4 ∈ {4;7} hay n ∈ {0;3}
c, Vì 5(9 - 2n) ⋮ (9 - 2n) nên nếu (5n+2) ⋮ (9 - 2n) thì 2(5n+2) ⋮ (9 - 2n)
Suy ra: [5(9 - 2n)+2(5n+2)] ⋮ (9 - 2n) hay 49 ⋮ (9 - 2n) => 9 - 2n ∈ {1;7;49}
Vì 9 - 2n ≤ 9 nên 9 - 2n ∈ {1;7}
Từ đó ta có n ∈ {4;1} với n < 5
Thử lại ta thấy n = 4 hoặc n = 1 đều thõa mãn.
Vậy n ∈ {4;1}
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
a, Ta có 3(n + 4 ) \(⋮\) (n+ 4)
\(\Rightarrow\) 3(n + 4) = 3n + 12.
Xét tổng (16 - 3n) + (3n + 12)
= 16 - 3n + 3n + 12
= 28 (khử n)
Để (16 - 3n) \(⋮\)(n+4) thì 28 \(⋮\)(n+4)
\(\Rightarrow\) n+ 4\(\in\) Ư(28) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28}
Vì n+ 4 \(\ge\) 4 \(\Rightarrow\) n+4 \(\in\) { 4 ; 7 ; 14 ; 28}
+ n + 4 = 4
n = 4 - 4
n = 0
+ n + 4 = 7
n = 7 - 4
n = 3
+ n + 4 = 14
n = 14 - 4
n = 10
+ n + 4 = 28
n = 28 - 4
n = 24
Vậy n \(\in\) { 0 ; 3 ; 10 ; 24}
b, Làm dạng giống phần a. Hãy động não một chút.
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
a) 16 - 3n chia hết cho n +4
n+ 4 chia hết cho n+4
=) (16 - 3n ) - ( n + 4) chia hết cho n + 4
16 - 3n - n- 4 chia hết n + 4
12 +4n chia hết cho n +4
= ) n +4 thuộc Ư ( 12 + 4n )
?????
hic mới biết làm tới đây thông cảm
\(a,\Rightarrow3^n=27=3^3\Rightarrow n=3\\ b,\Rightarrow13^n=13=13^1\Rightarrow n=1\\ c,\Rightarrow2^4< 2^{n-1}< 2^6\\ \Rightarrow n-1=5\Rightarrow n=6\\ d,\Rightarrow5^n=134-9=125=5^3\Rightarrow n=3\)
Còn phần e và f nx mà