K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

1) 2n+7=2(n+1)+5

để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1

=> n+1\(\in\) Ư(5) => n\(\in\){...............}

bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa

Từ bài 2-> 4 áp dụng như bài 1

4 tháng 1 2021

Ta có 2n+7=2(n+1)+5

Vì 2(n+1

Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1

Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}

Lập bảng n+1 I 1 I 5

                  n   I 0 I 4

Vậy n "thuộc tập hợp" {0;4}

24 tháng 9 2017

n+9 chia hết cho n-2

n+9= (n-2)+11

Để n+9 chia hết cho n-2 thì 11 chia hết cho n-2

n-2 thuộc Ư(11)={1,11}

n-2=1 => n=1+2 => n=3

n-2=11=> n=11+2=> n=13

b) 2n+5 chia hết cho n+2

2n+5=2(n+2)+1

để 2n+5 chia hết cho n+2 thì 1: n+2

=> n+2 thuộc Ư(1)={1}

n+2=1 => n=1-2 => n=-1

c) 6n-16 chia hết cho 2n+1

6n-16=3(2n+1)-19

để 6n-16 chia hết cho 2n+1 thì 19 chia hết cho 2n+1

=> 2n+1  thuộc Ư(19)={19}

=> 2n+1=1 => 2n=1+1  => 2n=2 => n=2:2 => n=1

tương tự như vậy bn tự giải số còn lại nha

24 tháng 9 2017

a)\(n+9=n-2+11\)chia hết cho n-2

mà n-2 chia hết cho n-2 => 11 chia hết cho n-2

=>\(n-2\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

\(\Rightarrow n\in\left\{-9;1;3;13\right\}\)

b)\(2n+5=\left(2n+4\right)+1=2\left(n+2\right)+1\) chia hết cho n+2

mà 2(n+2) chia hết cho n+2 => 1 chia hết cho n+2

=>\(n+2\in\left\{-1;1\right\}\)

=>\(n\in\left\{-3;-1\right\}\)

22 tháng 11 2020

a, \(2n+7⋮n+1\)

\(2\left(n+1\right)+5⋮n+1\)

\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n + 11-15-5
n0-24-6

b, \(4n+9⋮2n+3\)

\(2\left(2n+3\right)+3⋮2n+3\)

\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

2n + 31-13-3
2n-2-40-6
n-1-20-3
14 tháng 12 2020

4-3=2 yêu anh ko hề sai

15 tháng 1 2018

a/ 5n+2\(⋮\)9-2n

<=> 2(5n+2)\(⋮\)9-2n

<=> 10n+4\(⋮\)9-2n

<=> 10n-45+49\(⋮\)9-2n

<=> 49-(45-10n)\(⋮\)9-2n

<=> 49-5(9-2n)\(⋮\)9-2n

<=> 49\(⋮\)9-2n => 9-2n=(-49,-7,-1,1,7,49)

9-2n-49-7-1 1 7   49
n 29 8 5 4 1 -20 (loại)

ĐS: n=(1,4,5,8,29)

b/ Làm tương tự

15 tháng 1 2018

a,5n+2 chia hết cho 9-2n

=>2(5n+2)+5(9-2n) chia hết cho 9-2n

=>10n+4+45-10n chia hết cho 9-2n

=>49 chia hết cho 9-2n

=>9-2n E Ư(49)={1;-1;7;-7;49;-49}

=>2n E {8;10;2;-16;-40;58}

=>n E {4;5;1;-8;-20;29}

Mà n là stn

=>n E {4;5;1;29}

b, 6n+9 chia hết cho 4n-1

=>2(6n+9)-3(4n-1) chia hết cho 4n-1

=>12n+18-12n+3 chia hết cho 4n-1

=>21 chia hết cho 4n-1

=>4n-1 E Ư(21)={1;-1;3;-3;7;-7;21;-21}

=>4n E {2;0;4;-2;8;-6;22;-20}

=>n E {1/2;0;1;-1/2;2;-3/2;11/2;-5}

Mà n là stn

=> n E {0;1}

17 tháng 12 2022

a: =>4n-2-3 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;3;-3\right\}\)

=>\(n\in\left\{1;0;2\right\}\)

b: =>6n-4+11 chia hết cho 3n-2

=>\(3n-2\in\left\{1;-1;11;-11\right\}\)

=>\(n\in\left\{1\right\}\)

17 tháng 12 2017

a)

\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)

\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)

\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)

\(n-1=1\Rightarrow n=2\)

\(n-1=2\Rightarrow n=3\)

\(n-1=4\Rightarrow n=5\)

Vậy \(n\in\left\{2;3;5\right\}\)