Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
Gọi số cần tìm là a b c với 0 ≤ c < b < a ≤ 9, a + b+ c = 10
Nhận thấy a + b + c = 9 + 1 + 0 = 8+ 2 + 0 = 7 + 3 + 0 = 6 + 4 + 0 = 7 + 2 + 1 = 6 + 3 + 1 = 5 + 4 + 1 = 5 + 3 + 2
Vậy có 8 số thỏa mãn điều kiện bài toán là : 910, 820, 730, 640, 721, 631, 541, 532
1001 phải là 2 số tự nhiên tiên tiếp
Nên \(\orbr{\begin{cases}n+1=1000\\n+1=1002\end{cases}\Rightarrow\orbr{\begin{cases}n=999\\x=1001\end{cases}}}\)
Thay n=999 ta có:
1+2+3+.....+999=\(\frac{\left(999+1\right)999}{2}=499500\)(loại)
Thay n=1001 ta có:
\(1+2+3+...+1001=\frac{\left(1001+1\right)1001}{2}=501501\)(chọn)
Vậy tổng cần tìm là: 501501
ta gọi số cần tìm là abcd (có gạch trên đầu abcd)
theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)
và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1
vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}
mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}
=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}
thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn
vậy số cần tìm là 4356
3 số đó là:721;631;532
3 số đó là : 721;631;532
Học Tốt !
@@