Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Goik x là số tự nhiên. Theo bài ta có: x-6 chia hết cho 29 hay x-35 chia hết cho 29
x-4 chia hết cho 31 hay x-35 chia hết cho 31
nên x-4 thuộc BC(29;31)=899
x-35=899 suy ra x=934
- Số dư của 934 chia cho 899 sẽ là 35
ĐS: 35
c1
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
c2
Bài giải:
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
tk nha mk trả lời đầu tiên đó!!!
Gọi số tự nhiên cần tìm là A Chia cho 29 dư 5 nghĩa là:
A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất Do đó p – q = 1
=> 2q = 29 – 23 = 6 => q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Chia cho 29 dư 5 nghĩa là:S=29r+5 (r thuộc N)
Tương tự S=31p+28 (p thuộc N)
Vì29r+5=31p+28=>29(r-p)=2p+23
ta thấy2p+23 là số lẻ=>29(r-p) cũng là số lẻ=>r-p>=1
Theo giả thieetsS nhỏ nhất=>p nhỏ nhất(A=31p+28)
2p=>29(r-p)-23 nhỏ nhất
=>r-p nhỏ nhất
Do đó r-p=1=>2p=29-23=6
=>p=3
Vậy số cần tìm là:A=31p+28=31.3+28=121
Gọi số tự nhiên cần tìm là a ( a \(\in\) N* )
Theo đề ra , ta có :
a chia cho 29 dư 5 \(\Rightarrow a-5⋮29\Rightarrow a-5+783⋮29\Rightarrow a+778⋮29\)
a chia cho 31 dư 28 \(\Rightarrow a-28⋮31\Rightarrow a-28+806⋮31\Rightarrow a+778⋮31\)
\(\Rightarrow a+778⋮29,31\) Mà : a là STN nhỏ nhất
\(\Rightarrow a+778=BCNN\left(29,31\right)\)
Ta có : 29 và 31 là hai số đôi một nguyên tố cùng nhau
\(\Rightarrow BCNN\left(29,31\right)=29.31=899\)
\(\Rightarrow a+778=899\Rightarrow a=899-778=121\)
Vậy số tự nhiên cần tìm là 121