Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?
Viết lại 5 số như sau:
p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4
=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.
=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất và là số nguyên tố).
Khi đó 5 số trong đầu bài là:
5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19
đều là số nguyên tố
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
So nguyen to do la: 3 vi 3 + 4 = 7 ( 7 la so nguyen to ) ; 3 + 8 = 11 ( 11 la so nguyen to )
Nếu p = 2
=> p + 4 = 6 (loại)
Nếu p = 3
=> p + 4 = 7 (tm)
=> p + 14 = 17 (tm)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)
Khi p = 3k + 1
=> p + 14 = 3k + 1 + 14 = 3k + 15 = 3(k + 5) \(⋮\)3
=> p + 14 là hợp số (loại)
Khi p = 3k + 2
=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) \(⋮\)3 (loại)
=> p + 4 là hợp số (loại)
Vậy p = 3