Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
\(\left|3x-1\right|=\left|2x+5\right|\)
\(\Rightarrow\orbr{\begin{cases}3x-1=2x+5\\3x-1+2x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x-2x=5+1\\5x+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{5}\end{cases}}\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|3y-1\right|\ge0\\\left|z+2\right|\ge0\end{cases}}\Rightarrow\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left|3y-1\right|=0\\\left|z+2\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\3y-1=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\\z=-2\end{cases}}\)
Vậy x = 1, \(y=\frac{1}{3}\),z = -2
(2\(x\) - 1).(2\(x\) - 5) < 0
Lập bảng ta có:
\(x\) | \(\dfrac{1}{2}\) \(\dfrac{5}{2}\) |
2\(x\) - 1 | - 0 + + |
2\(x\) - 5 | - - 0 + |
(2\(x\) - 1).(2\(x\) - 5) | + 0 - 0 + |
Theo bảng trên ta có: \(\dfrac{1}{2}\) < \(x\) < \(\dfrac{5}{2}\)
(3 - 2\(x\)).(\(x\) + 2) > 0
Lập bảng ta có:
\(x\) | -2 \(\dfrac{3}{2}\) |
3 - 2\(x\) | + + 0 - |
\(x\) + 2 | - 0 + + |
(3 -2\(x\)).(\(x\) +2) | - 0 + 0 - |
Theo bảng trên ta có: - 2 < \(x\) < \(\dfrac{3}{2}\)
a) I3x+1I>4(1)
\(\orbr{\begin{cases}3x+1\ge0\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\Rightarrow!3x+1!=3x+1\left(1\right)\Leftrightarrow3x+1>4\Rightarrow3x>3\Rightarrow x>1\\3x+1< 0\Rightarrow x< -\frac{1}{3}\Rightarrow!3x+1!=-3x-1\Rightarrow\left(1\right)\Leftrightarrow-3x-1>4\Rightarrow x< \frac{-5}{3}\end{cases}}\)
-5/3>-3
KL: x nguyen: x<-3 hoac x>1
b) {làm bằng lời, cho bạn dẽ hiểu} khác kiểu (a) chút cho vui
!4-x!+2x=3 (2)
Nếu 4-x>=0 hay x<=4 thì !4-x!=4-x
(2) tương đương : 4-x+2x=3=>x=-1 (nhận)
nếu 4-x<0 hay x>4:
(2)<=> -(4-x)+2x=3=> 3x=7
x=7/3<4 (loại)
Sủa lại đề nha : \(\left|\left(3x+4\right)^2+\left|y-5\right|\right|=1\)
Vì \(\left(3x+4\right)^2\ge0\) ; \(\left|y-5\right|\ge0\)
\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|\ge0\)
\(\Rightarrow\left|\left(3x+4\right)^2+\left|y-5\right|\right|=\left(3x+4\right)^2+\left|y-5\right|\)
\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|=1=0+1=1+0\)
Nếu \(\left(3x+4\right)^2=0\) thì \(\left|y-5\right|=1\) => \(x=-\frac{4}{3}\) thì \(y=4;6\)
Nếu \(\left(3x+4\right)^2=1\) thì \(\left|y+5\right|=0\) =? \(x=-\frac{5}{3};-1\) thì y = \(-5\)
=> cặp ( x;y ) thỏa mãn đề bài là ( -4/3; 4 ); (-4/3;6) ; (-5/3;-5) ; (-1;5)
Mà x ; y nguyên => ( x;y ) = ( -1;5 )
Vậy có 1 cặp (x;y) thỏa mãn
3x- I2x+1I=2
Có 2 trường hợp:
1) 3x-2x+1=2
x+1=2
Vậy x=1
3x-2x+1= -2
x+1 = -2
Vậy x= -3