K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2023

c) \(\left(34-2x\right)\left(2x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}34-2x=0\\2x-6-0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)

d) \(\left(2019-x\right)\left(3x-12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2019\\3x=12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)

e) \(57\left(9x-27\right)=0\)

\(\Rightarrow9x-27=0\)

\(\Rightarrow9\left(x-3\right)=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

f) \(25+\left(15-x\right)=30\)

\(\Rightarrow25+15-x=30\)

\(\Rightarrow40-x=30\)

\(\Rightarrow x=40-30\)

\(\Rightarrow x=10\)

g) \(43-\left(24-x\right)=20\)

\(\Rightarrow43-24+x=20\)

\(\Rightarrow19+x=20\)

\(\Rightarrow x=20-19\)

\(\Rightarrow x=1\)

h) \(2\left(x-5\right)-17=25\)

\(\Rightarrow2\left(x-5\right)=17+25\)

\(\Rightarrow x-5=21\)

\(\Rightarrow x=21+5\)

\(\Rightarrow x=26\)

i) \(3\left(x+7\right)-15=27\)

\(\Rightarrow3\left(x+7\right)=27+15\)

\(\Rightarrow x+7=14\)

\(\Rightarrow x=14-7\)

\(\Rightarrow x=7\)

j) \(15+4\left(x-2\right)=95\)

\(\Rightarrow4\left(x-2\right)=95-15\)

\(\Rightarrow4\left(x-2\right)=80\)

\(\Rightarrow x-2=20\)

\(\Rightarrow x=20+2\)

\(\Rightarrow x=22\)

k) \(20-\left(x+14\right)=5\)

\(\Rightarrow x+14=20-5\)

\(\Rightarrow x+14=15\)

\(\Rightarrow x=15-14\)

\(\Rightarrow x=1\)

l) \(14+3\left(5-x\right)=27\)

\(\Rightarrow3\left(5-x\right)=27-14\)

\(\Rightarrow3\left(5-x\right)=13\)

\(\Rightarrow5-x=\dfrac{13}{3}\)

\(\Rightarrow x=5-\dfrac{13}{3}\)

\(\Rightarrow x=\dfrac{2}{3}\)

Bài 3: 

a: Ta có: 60-3(x-2)=51

\(\Leftrightarrow x-2=3\)

hay x=5

b: Ta có: \(4x-20=25:2^2\)

\(\Leftrightarrow4x=\dfrac{25}{4}+20=\dfrac{105}{4}\)

hay \(x=\dfrac{105}{16}\)

c: Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)

\(\Leftrightarrow288:\left(x-3\right)^2=50-48=2\)

\(\Leftrightarrow\left(x-3\right)^2=144\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)

14 tháng 12 2022

a)

\(x-5=-1\)

\(x=-1+5\)

\(x=4\)

b)

\(x+30=4\)

\(x=4-30\)

\(x=-26\)

c)

\(x-(-24)=3\)

\(x+24=3\)

\(x=3-24\)

\(x=-21\)

d)

\(22-(-x)=12\)

\(22+x=12\)

\(x=12-22\)

\(x=-10\)

e)

\(( x + 5 ) + ( x - 9 ) = x + 2\)

\(x+5+x-9=x+2\)

\(x+x-x=2+9-5\)

\(x=6\)

f)

\(( 27 - x ) + ( 15 + x ) = x - 24\)

\(27-x+15+x=x-24\)

\(-x+x-x=-24-15-27\)

\(-x=-66\)

\(x=66\)

13 tháng 12 2022

x - 5 = -1                                         x  - (-24) = 3

x      = -1 + 5                                    x + 24 = 3

x     = 4                                             x         = 3 - 24

x + 30 =  4                                        x        = - 21

x         = 4 - 30                            22  - ( -x) = 12

x         = - 26                               22 + x     =  12

x + 5 + ( x - 9) = x + 2                         x     = 12 - 22          

x + 5 + x - 9    =  x + 2                         x    = -10

2x  - x             = 2 - 5 + 9              ( 27 - x) + ( 15 + x) = x - 24

x                     = - 3 + 9                    27 - x + 15 + x    = x - 24

x                     = 6                             27 + 15              = x - 24

                                                               x - 24 = 42  

                                                               x          = 42 + 24

                                                                x           = 66

21 tháng 1 2022

\(a,\left(2x-5\right)+17=6\\ \Rightarrow2x-5=-11\\ \Rightarrow2x=-6\\ \Rightarrow x=-3\\ b,10-2\left(4-3x\right)=-4\\ \Rightarrow2\left(4-3x\right)=14\\ \Rightarrow4-3x=7\\ \Rightarrow3x=-3\\ \Rightarrow x=-1\\ c,24:\left(3x-2\right)=-3\\ \Rightarrow3x-2=-8\\ \Rightarrow3x=-6\\ \Rightarrow x=-2\\ d,5-2x=-17+12\\ \Rightarrow5-2x=-5\\ \Rightarrow2x=10\\ \Rightarrow x=5\)

a: =>2x-5=-11

=>2x=-6

hay x=-3

b: =>2(4-3x)=14

=>4-3x=7

=>3x=-3

hay x=-1

c: =>3x-2=-8

=>3x=-6

hay x=-2

10 tháng 8 2023

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3