Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2y^3-x^2y-M=x^2y^3+x^2y\\ \Rightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y\\ \Rightarrow M=2x^2y^3-2x^2y\)
\(\Leftrightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y=2x^2y^3-2x^2y\)
a: =>\(4\cdot3^x\cdot\dfrac{1}{3}+2\cdot3^x\cdot9=4\cdot3^6+2\cdot3^9\)
=>3^x(4*1/3+2*9)=3^6(4+2*3^3)
=>3^x*58/3=3^6*58
=>3^x/3^6=3
=>x-6=1
=>x=7
b: =>\(2^x\cdot\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)=2^7\left(\dfrac{1}{5}+\dfrac{1}{3}\cdot2\right)\)
=>2^x=2^7
=>x=7
\(a)\)
Để x là số nguyên
\(\Rightarrow\frac{2}{2a+1}\)là số nguyên
\(\Rightarrow2⋮2a+1\Rightarrow2a+1\inƯ\left(2\right)\Rightarrow2a+1\in\left\{\pm1;\pm2\right\}\)
Ta có:
2a+1 | -2 | -1 | 1 | 2 |
a | -3/2 | -1 | 0 | 1/2 |
So sánh điều điện a | Loại | TM | TM | Loại |
\(b)\)
Ta có:
\(\frac{6\left(x-1\right)}{3\left(x+1\right)}\) thuộc số nguyên
\(=\frac{6x-1}{3x+1}=\frac{6x+2-3}{3x+1}=\frac{6x+2}{3x+1}-\frac{3}{3x+1}=2-\frac{3}{3x+1}\)
\(\Leftrightarrow3⋮3x+1\Rightarrow3x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(3x+1=1\Leftrightarrow3x=0\Leftrightarrow x=0\left(TM\right)\)
\(3x+1=-1\Leftrightarrow3x=-2\Leftrightarrow x=\frac{-2}{3}\)(Loại)
\(3x+1=3\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(Loại)
\(3x+1=-3\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)(Loại)
`(x+1)/(x+2)` nguyên `<=> (x+1)\ vdots (x+2)`
`<=>(x+2)-1\ vdots (x+2)`
`<=>-1\ vdots (x+2)`
`<=>x+2\ in {-1;1}`
`<=>x\ {-3;-1}`.