K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

\(x^2-2y^2=1\)

\(\Leftrightarrow\left(x^2-1\right)\div2=y^2\)

Vì x và y là số nguyên dương nên :

x > y hay x là số lẻ ( Vì nếu x là số chẵn ( số 2 ) thì không có hiệu là 1 như theo đề bài )

Thay x = 2a + 1 ( Vì x là số lẻ ), ta có:

\(\left(2a+1\right)^2-1=y^2\)

\(\Leftrightarrow\left(2a+1\right)\times\left(2a+1\right)-1=y^2\)

\(\Leftrightarrow4a^2+2a+2a+1-1=y^2\)

\(\Leftrightarrow4a^2+2a+2a=y^2\)

\(\Leftrightarrow2\left(2a^2+a+a\right)=y^2\)

Từ đó có thể dễ dàng thấy y2 chia hết cho 2 nhưng y2 không thể bằng 2 ( Không có số nguyên z nào mũ 2 bằng 2 )

Vì y2 chia hết cho 2 nên y chia hết cho 2 và y = 2 ( Vì y2 không thể bằng 2 )

\(\Rightarrow x^2=1+2\times2^2=9\)

\(\Rightarrow x=3\)

Vậy x = 3, y = 2 thỏa mãn điều kiện bài toán

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

$x^2=2y^2+1$ là số lẻ nên $x$ là số lẻ.

$x^2=2y^2+1$

$\Rightarrow x^2-1=2y^2$

$\Rightarrow (x-1)(x+1)=2y^2$

Vì $x$ lẻ nên $x-1, x+1$ đều chẵn

$\Rightarrow (x-1)(x+1)\vdots 4$

$\Rightarrow 2y^2\vdots 4\Rightarrow y^2\vdots 2\Rightarrow y$ chẵn.

Mà $y$ là stn nên $y=2$.

Khi đó: $x^2-1=2y^2=2.2^2=8$

$x^2=8+1=9\Rightarrow x=3$

Vậy $(x,y)=(3,2)$

7 tháng 1 2018

2)

Tổng của 2 số là 2009

=> Trong 2 số phải có 1 số chẵn và 1 số lẻ

Mà số nguyên tố chẵn duy nhất là 2

=> 1 số là 2. Số còn lại là:

      2009 - 2 = 2007 không là số nguyên tố

=> Tổng của 2 số nguyên tố không thể bằng 2009.

7 tháng 1 2018

1) 

Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)

Với p = 3 => p + 2 = 3 + 2 = 5 là  SNT

                => p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)

Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)

Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3

=> p + 2 là hợp số (loại)

Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3

=> p + 4 là hợp số (loại)

Vậy p = 3

27 tháng 12 2014

Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

8 tháng 11 2016

bai dung

3 tháng 12 2016

ta thấy \(2y^2+1\)là số lẻ \(\Rightarrow x^2\)là số lẻ\(\Rightarrow\)x là số lẻ nên x=2k+1 với k là số tự nhiên khác 0.\(\Rightarrow2y^2+1=\left(2k+1\right)^2\Leftrightarrow2y^2+1=4k^2+4k+1\)\(\Rightarrow2y^2=4\left(k^2+k\right)\Rightarrow y^2=2\left(k^2+k\right)\)\(\Rightarrow\)y chẵn \(\Rightarrow\)y=2 \(\Rightarrow\)x=3

9 tháng 1 2018

x2-2y2=1

=>x2-1=2y2

=>x2-12=2y2

=>(x-1)(x+1)=2y2=y.2y

+)(x-1)(x+1)=2y2

=>x-1=2 và x+1=y2

=>x=3 và x+1=y2

Có x=3,thay vào x+1=y2=>3+1=y2=>y2=4=>y E {-2;2},Mà y là số nguyên tố=>y=2

+)(x-1)(x+1)=y.2y

=>x-1=y và x+1=2y

=>x=y+1 và x+1=2y

Có x=y+1,thay vào x+1=2y => (y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2

do đó x=2+1=>x=3

Vậy tất cả cặp số nguyên tố (x;y) thỏa mãn đề bài là (3;2)

15 tháng 11 2015

Ta có x2−2y2=1→x2−1=2y2 

+ Nếu x chia hết cho 3 thì x=3 (vì x là số nguyên tố). Thay vào  ta có 

32−1=2y2=8→y2=4→y=2

+ Nếu x không chia hết cho 3 thì x có dạng 3k+1 hoặc 3k+2 (k ∈ N)
 

Với x=3k+1 thì 2y2=x2−1=(x−1)(x+1)=(3k+1−1)(3k+1+1)=3k(3k+2)⋮3

Với x= 3k+2 thì 2y2=x2−1=(x−1)(x+1)=(3k+2−1)(3k+2+1)=(3k+1)(3k+3)=3(3k+1)(k+1)⋮3

Như vậy với mọi x không chia hết cho 3 thì x2−1⋮3→2y2⋮3. Mà (2;3)= 1

Nên y2⋮3. Do 3 là số nguyên tố nên y⋮3. Mà y là số nguyên tố nên y=3

Thay y=3 vào  ta có:

x2−1=2.32=18→x2=19→x=19−−√ (không tm)


Vậy chỉ có 1 cặp số (x;y) thỏa mãn là x=3; y=2 

 

25 tháng 9 2015

a) x-2xy+y=0

=> x-(2xy-y)=0

=> x- y(2x-1)=0

=> 2x-2y(2x-1)=0

=>( 2x-1) -2y(2x-1)=-1

=> (2x-1)(1-2y)=-1

=> ( 2x-1 ; 1-2y ) = ( -1 ;1 ) ; (1;-1 )

=> (x;y)=( 0 ; 0 ) ; ( 1;1)

b) x2 - 2y2 = 1

=> x2 - 1 = 2y2 => (x - 1).(x + 1) = 2y2 (1)

Xét tổng (x - 1) + (x + 1) = 2x là số chẵn => x - 1 ; x + 1 cùng tích chẵn hoặc lẻ. (2)

Từ (1), (2) => x - 1; x + 1 cùng là số chẵn.

=> (x - 1).(x + 1) là số chẵn <=> 2y2 là số chẵn <=> y2 là số chẵn.

Mà y là số nguyên tố => y = 2. Khi đó x = 1 + 2.22 = 9 => x = 3

                                Vậy x = 3 và y = 2

26 tháng 2 2017

x2-2y2=1

=>x2=2y2+1

=> x2 lẻ=>x=2k+1

=>4k2+4k+1=1+2y2=>2y2 chia hết cho 4=> y=2

=>x=3