Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
Xét trường hợp p= 2=> p+10= 12﴾không phải là số nguyên tố﴿
Xét trường hợp p= 3=> p+ 10= 13; p+ 14= 17 ﴾đều là số nguyên tố﴿
Xét p>3=> p có một trong 2 dang 3k+1; 3k‐ 1
+﴿Với p= 3k+1=> p+14= 3k+1+14=3k+15 chia hết cho 3
+﴿Với p= 3k‐1=> p‐ 10= 3k‐ 1+ 10= 3k+9 chia hết cho 3
Vậy p= 3 thì p+10 và p+14 cũng là số nguyên tố
xét: p +2; p +3 ; p +4 là 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
theo gt p +2 và p +4 là số nguyên tố > 3 nên p +2 và p +4 không chia hết cho 3
=> p + 3 chia hết cho 3 => p chia hết cho 3
mà p là số nguyên tố => p = 3