Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc
a. A=(p;p+2;p+4)
p=2=>A=(2,4,6)loai vay P phai le
Tập hợp 3 số lẻ liên tiếp phải có số chia hết cho 3
Vậy P =3
A=(3,5,7)
b.A=(p,p+10,p+14); p=2
P=1=> A=(3,13,17) nhan
P>3 (p nguyen to do vay p co dang p=3n+1 &3n+2)
*TH1; P co dang p=3n+1
P+10=3n+11
P+14=3n+15 chia het cho 3=> loai P=3n+1
*TH2; P co dang p=3n+2
P+10=3n+12 chia het cho 3 => loai p=3n+2
vay P=3 duy nhat
c. A=(p,p+2,p+6,p+8)
p=2 loai
p=3=> A=(3.5,9,11) loai
p=5=>A=(5,7,11,13) nhan
P=11A=(11,13,17,19) nhan
xet P>11
tuong tu (b) xe ra hoi dai
de xem co cach ngan hon ko
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
a)- nếu p= 2 => p là HS (loại)
- nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m
p+4= 3+4= 7 (SNT) => t/m
- Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1
P:3 dư 2 => P= 3k +2
+ P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3 ( t/m)
+ P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3 (t/m )
Vậy P=3
Tìm số nguyên tố p sao cho
A. p, p+2, p+4 là các số nguyên tố
B. p+10,p+14 là các số nguyên tố
C. p+2,p+6,p+8,p+14 là các số nguyên tố
a)- nếu p= 2 => p là HS (loại)
- nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m
p+4= 3+4= 7 (SNT) => t/m
- Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1
P:3 dư 2 => P= 3k +2
+ P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3 ( t/m)
+ P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3 (t/m )
Vậy P=3
Xét trường hợp p=2=> p+10=12 ( ko phải là số nguyên tố)
Xét trường hợp p=3 => p+10= 13; p+14=17 ( đều là số nguyên tố)
Xét p>3 => p có 1 trong 2 dạng 3k+1 và 3k-1
+, Với p= 3k+1=>p+14=3k+1+14=3k+15 chia hết cho 3
+, Với p= 3k-1=> p-10= 3k-1+10= 3k+9 chia hết cho 3
Vậy p= 3 thì p+10 và p+14 là các số nguyên tố
Mk ms lm đc câu a, còn b để mk nghĩ tiếp
k mk nka
a) Với p=1
Ta có
p+2=1+2=3 (nguyên tố,thỏa mãn)
p+4=1+4=5 (thỏa mãn )
Nhưng p lại là 1 số nguyên tố mà 1 ko phải số nguyên tố nên p=1 (loại)
Với p=2
Ta có:
p+2=2+2=4 (loại)
=>Trường hợp p=2 (loại)
Với p=3
Ta có
p+2=3+2=5 (thỏa mãn)
p+4=3+4=7 (thỏa mãn)
=>Trường hợp p=3 (thỏa mãn)
Với p>3 thì p có dạng 3k+1 hoặc 3k+2
+,p=3k+1
thì p+2=3k+1+2=3k+3 chia hết cho 3 là hợp số( loại)
+,p=3k+2
thì p+4=3k+2+4=3k+6 chia hết cho 3 là hợp số( loại)
Vậy để p là số nguyên tố và p+2 và p+4 cũng là số nguyên tố thì p=3
Các câu khác bn lm tương tự nha
Mk ko chắc là lm đúng đâu nếu sai thì xl bn nhiều