Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ thấy pq⋮2pq⋮2
nếu p=2 thì 14+q,2q+1114+q,2q+11 là số nguyên tố
nếu q chia 3 dư 1 thì 14+q chia hết cho 3
nếu q chia 3 dư 2 thì 2q+11 chia hết cho 3
từ đó suy ra q=3
nếu q=2 thì 7p+2 và 2p+11 là số nghuyên tố
tương tự trên ta có p=3
Giải : ab - ba = ( 10a + b ) - ( 10b + a ) = 9a - 9b
= 9( a - b ) = 32( a - b ) .
Do ab - ba là số chính phương nên a - b là số chính phương.
Ta thấy 1 \(\le\) a - b \(\le\) 8 nên a - b \(\in\) { 1 ; 4 }
Với a - b = 1 thì ab \(\in\) { 21 ; 32 ; 43 ; 54 ; 65 ; 76 ; 87 ; 98 } . Loại các hợp số 21 ; 32 ; 54 ; 65 ; 76 ; 87 ; 98 , còn 43 là số nguyên tố .
Với a - b = 4 thì ab \(\in\) { 51 ; 62 ; 73 ; 84 ; 95 } . Loại các hợp số 51 ; 62 ; 84 ; 95 , còn 73 là số nguyên tố .
Vậy ab = 43 hoặc 73
Khi đó : 43 - 34 = 9 = 32 và 73 - 37 = 36 = 62
15x + 10y = 2000
5(3x + 2y) = 5.400
3x + 2y = 400
=> 3x = 400 - 2y
Vì 400 - 2y chia hết cho 2 => 3x chia hết cho 2 . Mà ( 3;2 ) = 1 => x chia hết cho 2
Mà x là số nguyên tố => x = 2
<=> 400 - 2y = 6
=> 200 - y = 3
=> y = 200 - 3 = 197 (thỏa mãn vì 193 là số nguyên tố)
Vậy x = 2; y = 197
Vì A là số tự nhiên \(\Rightarrow\) \(A=\frac{n^2+3n}{8}\in N\Rightarrow n^2+3n⋮8\)
\(\Rightarrow n.\left(n+3\right)⋮8\)
Mặt khác (n+3) - n =3 là số lẻ \(\Rightarrow\) n+3 và n không cùng tính chẵn lẻ
\(\Rightarrow\orbr{\begin{cases}n⋮8\\n+3⋮8\end{cases}}\)
TH1 : \(n⋮8\Rightarrow n=8k\)( k \(\in\)N* ) \(\Rightarrow A=\frac{\left(8k\right)^2+8k.3}{8}=8k^2+3k=k.\left(8k+3\right)\)
Mà A là số nguyên tố \(\Rightarrow\)k.(8k+3) là số nguyên tố (1)
Lại có k \(\in\) N* \(\Rightarrow8k+3\in\)N*
8k+3 > k kết hợp (1)
\(\Rightarrow\hept{\begin{cases}k=1\\8k+3laSNT\end{cases}\Rightarrow8k+3=8.1.3=11}\)là SNT ( t/m)
\(\Rightarrow n=8.1=8\)
TH2: \(n+3⋮8\Rightarrow n+3=8k\)( k \(\in\) N* )
\(\Rightarrow n=8k-3\Rightarrow A=\frac{\left(8k-3\right)^2+3.\left(8k-3\right)}{8}\)
\(=\frac{\left(8k-3\right).\left(8k-3+3\right)}{8}=\frac{\left(8k-3\right).8k}{8}=k.\left(8k-3\right)\)
Mà A là SNT \(\Rightarrow k.\left(8k-3\right)\)là SNT (2)
Lại có : k\(\in\)N*\(\Rightarrow k\ge1\Rightarrow8k-3\ge5>0\)
k \(\in\)N* \(\Rightarrow8k-3\)\(\in\)Z ( ngoặc 2 dòng )
\(\Rightarrow8k-3\in\)N* kết hợp (2)
\(\Rightarrow\)+) k=1 và 8k-3 là SNT \(\Rightarrow\)k=1 và 8k-3=8.1-3=5 là SNT \(\Rightarrow n=5\)
+) 8k-3 =1 và k là SNT \(\Rightarrow\)k \(\notin\)N* mà k là SNT ( loại )
Vậy \(n\in\left\{5;8\right\}\)
( lưu ý nhé có chỗ ko viết được TV nên tui ghi ko có dấu )
Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)
p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ
a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ
=> Vô lý=> b = 0 => a = 0 => đpcm