Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi số tự nhiên đều viết được dưới dạng 5k,5k+1,5k+2,5k+3,5k+4
Nếu p = 5k+1 suy ra p+14=5p+15=5﴾p+3﴿chia hết cho 5 ﴾loại﴿
Nếu p = 5k+2 suy ra p+8=5p+10=5﴾p+2﴿ chia hết cho 5 ﴾loại﴿
Nếu p = 5k+3 suy ra p+12=5p+15=5﴾p+3﴿ chia het cho 5 ﴾loại﴿
Nếu p = 5k+4 suy ra p+6= 5p+10=5﴾p+2﴿chia hết cho 5 ﴾loại
Vậy p chỉ có thể bằng 5k.mà p là nguyên tố nên p =5. Vậy p=5
\(n=2\)không thỏa.
\(n=3\)thỏa.
\(n>3\)khi đó \(n\)có dạng \(3k+1\)hoặc \(3k+2\).
Với \(n=3k+1\)thì \(n+14=3k+15⋮3\)nên không là số nguyên tố.
Với \(n=3k+2\)thì \(n+10=3k+12⋮3\)nên không là số nguyên tố.
Vậy chỉ có \(n=3\)thỏa mãn.
gọi d=2a+1 và 6a+4
suy ra 2a+1 chia hết cho d; 6a+4 chia hết cho d
suy ra : (6a+4)-(2a+1) chia hết cho d
suy ra (6a+4)-3(2a+1) chia hết cho d
suy ra 1 chia hết cho d suy ra d=1
vậy 2a+1 và 6a+4 là hai số nguyên tố cùng nhau
đúng rồi đấy nhớ tick cho mình nhé!
Ta có: (p - 1).(p + 1) = p2 - 1
Do p nguyên tố; p > 3 => p không chia hết cho 3 => p2 không chia hết cho 3 => p2 chia 3 dư 1
=> p2 - 1 chia hết cho 3 (1)
Do p nguyên tố, p > 3 => p lẻ => p2 lẻ => p2 chia 8 dư 1
=> p2 - 1 chia hết cho 8 (2)
Từ (1) và (2) => p2 - 1 chia hết cho 3 và 8
=> (p - 1).(p + 1) chia hết cho 3 và 8
Chứng tỏ nếu p nguyên tố > 3 thì (p - 1).(p + 1) chia hết cho 3 và 8
nếu p= 2=> p+2=4(l)
p= 3=>p+2=5
p+4=7( t.man)
=> p co dang : 3k+1; 3k+2
nếu p có dạng 3k+1=> 3k+1+2= 3k+3= 3(k+1)( l)
nếu p có dạng 3k+2=> 3k+2+4= 3k+6= 3( k+2) (l)
vậy p= 3
+để 3k là số nguyên tố thì k = 1
+để 7k là số nguyên tố thì k=1
Gọi d thuộc ƯC (8a+3;5a+2)
=>\(\hept{\begin{cases}8a+3⋮d\\5a+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(8a+3\right)⋮d\\8\left(5a+2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}40a+15⋮d\\40a+16⋮d\end{cases}}\Rightarrow\left(40a+16\right)-\left(40a+15\right)⋮d_{ }\)
=>1\(⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{1;-1\right\}\)
Vậy 8a+3 và 5a+2 nguyên tố cùng nhau(vì ước chung của 2 số nguyên tố cùng nhau là :1;-1)
Vì n là số tự nhiên => n = 0 hoặc n thuộc N*
Nếu n = 0
50+30=1+30 = 31
Mà 31 là số nguyên tố ( thỏa mãn )
+ Nếu n thuộc N* => 5n chia hết cho 5 mà 30 chia hết cho 5
=> 5n + 30 chia hết cho 5
MÀ 5n + 30 > 55
=> 5n+30 là hợp số ( mâu thuẫn với đề bài )
Vậy n = 0 thì 5n + 30 là số nguyên tố