Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
a, n - 2 ⋮ n + 1
=> n + 1 - 3 ⋮ n + 1
=> 3 ⋮ n + 1
=> n + 1 thuộc Ư(3)
=> n + 1 thuộc {-1; 1; -3; 3}
=> n thuộc {-2; 0; -4; 2}
b, 2n - 3 ⋮ n - 1
=> 2n - 2 - 1 ⋮ n - 1
=> 2(n - 1) - 1 ⋮ n - 1
=> 1 ⋮ n - 1
=> n - 1 thuộc {-1; 1}
=> n thuộc {0; 2}
c, 3n + 5 ⋮ 2n - 1
=> 6n + 10 ⋮ 2n - 1
=> 6n - 3 + 13 ⋮ 2n - 1
=> 3(2n - 1) + 13 ⋮ 2n - 1
=> 13 ⋮ 2n - 1
=> 2n - 1 thuộc Ư(13)
=> 2n - 1 thuộc {-1; 1; -13; 13}
=> 2n thuộc {0; 2; -12; 14}
=> n thuộc {0; 1; -6; 7}
\(2n-1⋮n+1\)
\(\Rightarrow2\left(n+1\right)-3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n+1=1;-1;3;-3\)
\(\Rightarrow n=0;-2;2;-4\)
Ta có 2n-1=(2n+2)-3=2(n+1)-3
Vì theo bài ra 2n-1 chia hết cho n+1 nên 2(n+1)-3 cũng chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 nên 3 chia hết cho n+1
=>n+1 thuộc Ư(3)
=> Ta xét bảng sau
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Vậy tìm được n=0;-2;2;-4
nhớ tích đúng cho mình nha chúc bn học tốt
a) ta có 2n+3=2(n+2)-1
=> 1 chia hết cho n+2
n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2
Nếu n+1=1 => n=0
Vậy n={-2;0}
b) Ta có n2+2n+5=n(n+2)+5
=> 5 chia hết cho n+2
n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
5 + n2 - 2n \(⋮\)n - 2
=> 5 + n . n - 2 . n \(⋮\)n - 2
=> 5 + n . ( n - 2 ) \(⋮\)n - 2
=> 5 \(⋮\)n - 2 vì n . ( n - 2 ) đã chia hết cho n - 2
=> n - 2 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }
Với n - 2 = 1 => n = 3
Với n - 2 = -1 => n = 1
Với n - 2 = 5 => n = 7
Với n - 2 = -5 => n = -3
Vậy : n \(\in\){ 3 ; 1 ; 7 ; -3 }
Để \(5+n^2-2n⋮n-2\)
\(\Leftrightarrow5+n.\left(n-2\right)⋮n-2\)
\(\Leftrightarrow5⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(5\right)\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
\(\Leftrightarrow n\in\left\{3;1;7;-3\right\}\)
Chúc bạn học tốt !!!!
\(2n-1⋮n+1\)
\(\Rightarrow2n+2-3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n+1=1;-1;3;-3\)
\(\Rightarrow n=0;-2;2;-4\)
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5