Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để (n+3) chia hết cho (n+3) thì n={0:1:2:3:4:5:6:7:8:9}
b)(2n+5)\(⋮n+2\)
2(n+2)+1 chia hết cho (n+2)
Do 2(n+2)+1 chia hết cho n+2 nên 1 chia hết cho n+2
n+2=Ư(1)={1}
Lập bảng:
n+2 | 1 |
n | loại |
Vậy n=\(\varnothing\)
4n - 5 chia hết cho n - 3
4n - 12 + 7 chia hết cho n - 3
Mà 4n - 12 chia hết cho n - 3
7 chia hết cho n - 3
n - 3 thuộc U(7) = {-7 ; -1 ; 1 ; 7}
n thuộc {-4 ; 2 ; 4 ; 10}
4n - 5 ⋮ n - 3 <=> 4.( n - 3 ) + 7 ⋮ n - 3
Vì 4.( n - 3 ) + 7 ⋮ n - 3 . Để 4.( n - 3 ) + 7 ⋮ n - 3 <=> 7 ⋮ n - 3
=> n - 3 ∈ Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Vậy n ∈ { - 4 ; 2 ; 4 ; 10 }
n+6 ⋮ n-5
Vì n-5 ⋮ n-5
=> n+6 - (n-5) ⋮ n-5
=> n+6 - n+5 ⋮ n-5
=> 11 ⋮ n-5
=> n-5 \(\in\)Ư(11)
=> n-5 \(\in\){1;-1;11;-11}
=> n \(\in\){6;4;16;-6}
Vậy...
3n+22 ⋮ n-5
Vì 3(n-5) ⋮ n-5
=> 3n+22 - 3(n-5) ⋮ n-5
=> 3n+22 - 3n+15 ⋮ n-5
=> 37 ⋮ n-5
=> n-5 \(\in\)Ư(37)
=> n-5 \(\in\){1;-1;37;-37}
=> n \(\in\){6;4;42;-32}
Vậy...
2(n+1) ⋮ n-2
Vì 2(n-2) ⋮ n-2
=> 2(n+1) - 2(n-2) ⋮ n-2
=> 2n+2 - 2n+4 ⋮ n-2
=> 6 ⋮ n-2
=> n-2 \(\in\)Ư(6)
=> n-2 \(\in\){1;-1;2;-2;3;-3;6;-6}
=> n \(\in\){3;1;4;0;5;-1;8;-4}
Vậy...
(4n-5)/(n-3)= (4(n-3)+7)/(n-3)=4+7/(n-3)
để 4n-5 chia hết cho n-3 thì kết quả của phép chia này phải là số nguyên=> 7/(n-3) phải là số nguyên.
7/(n-3) là số nguyên khi n-3 thuộc Ư(7).Mà Ư(7)=(-1;1;-7;7)
=>
TH1:n-3=-1=>n=-1+3=2
TH2:n-3=1=>n=1+3=4
TH3:n-3=-7=>n=-7+3=-4
TH4:n-3=7=>n=7+3=10
Vậy để 4n-5 chia hết cho n-3 thì n thuộc {2;4;-4;10)
4n-5 chia hết cho n-3
4n-12+17 chia hết cho n-3
4(n-3)+17 chia hết cho n-3
=>17 chia hết cho n-3 hay (n-3)EƯ(17)={1;-1;17;-17}
=>nE{4;2;20;-14}
Ta có 2n+1=2(n-3)+7
Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3
Vì 2(n-3) chia hết cho n-3
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4
Nếu n-3=-1 => n=2
Nếu n-3=1 => n=4
Nếu n-3=7 => n=10
Ta có : \(2n+1⋮n-3\)
\(=>2n-6+7⋮n-3\)
\(Do:2n-6⋮n-3\)
\(=>7⋮n-3\)
\(=>n-3\inƯ\left(7\right)\)
Nên ta có bảng sau :
n-3 | 7 | 1 | -7 | -1 |
n | 10 | 4 | -4 | 2 |
Vậy ...
Ta có:
2n+1 chia hết cho n-3
<=> 2n+1-6+6 chia hết cho n-3
<=> 2n-6+7 chia hết cho n-3
Vì 2n-6 chia hết cho n-3 mà 2n-6+7 chia hết cho n-3 => 7 chia hết cho n-3
=>n-3 thuộc Ư(7)={-1;1;-7;7}
Nếu n-3=-1 =>n=2(t/m)
Nếu n-3=1 =>n=4(t/m)
Nếu n-3=-7 =>n=-4(t/m)
Nếu n-3=7 =>n=10(t/m)
Vậy n= -4;2;4;10
ta có 3n+10 chia hết cho n-1
=>3n-3+13 chia hết cho n-1
mà 3n-3 chia hết cho n-1
=>13 chia hết cho n-1
ta có bảng sau:
n-1 | 1 | 13 | -1 | -13 | |
n | 2 | 14 | 0 | -12 |
=>n=(2;14;0;-12)
n - 6 chia hết cho n-4
=> n-4-2 chia hết cho n-4
=> 2 chia hết cho n-4
=> n - 4 \(\in\){ 1;-1;2;-2}
=> n \(\in\) { 5;3;6;2}
k nha