K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow103n^2-103n+224n-224+294⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;2;3;6;7;14;21;42;49;98;147;294\right\}\)

hay \(n\in\left\{2;3;4;7;8;15;22;43;50;99;148;295\right\}\)

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

11 tháng 1 2016

Ta có: n3-3n2-3n-1=(n3-1)+(-3n2-3n-3)+3=(n-1)(n2+n+1)-3.(n2+n+1)+3

Để n3-3n2-3n-1 chia hết cho n2+n+1 thì: (n-1)(n2+n+1)-3.(n2+n+1)+3 chia hết cho n2+n+1

=>3 phải chia hết cho n2+n+1

=>n2+n+1 thuộc Ư(3)={1;-1;3;-3}

*n2+n+1=1

<=>n2+n=0

<=>n.(n+1)=0

<=>n=0 hoặc n=-1 (thỏa mãn cả hai)

*n2+n+1=-1

<=>n2+n+2=0 (vô lí vì: n2+n+2=(n+1/2)2+5/4 >0)

*n2+n+1=3

<=>n2+n-2=0

<=>n2-n+2n-2=0

<=>n.(n-1)+2.(n-1)=0

<=>(n-1)(n+2)=0

<=>n=1 hoặc n=-2 (thỏa mãn cả hai)

*n2+n+1=-3

<=>n2+n+4=0 (vô lí vì n2+n+4=(n+1/2)2+15/4>0)

Vậy n=-1;0;1;-2 thì n3-3n2-3n-1 chia hết cho n2+n+1

11 tháng 1 2016

Ta có: n3-3n2-3n-1=n3-4 -3(n2+n+1) chia hết cho n2+n+1

nên n3-4 chia hết cho n2+n+1

n3-1 chia hết cho n2+n+1

nên 3 chia hết cho n2+n+1

thử các TH ra