K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

A.x^2-y^2+2y

b 2x+2y-x^2-xy

c, 3a^2-6ab+3b^2-12

d,x^2 - 25+y^2+2xy

e,^2+2ab+b^2-ac-bc

f, x^2-2x-4y^2-4y

f,x^2y-x^3-9y+9x

h,x^2(x-1)+16(1-x)

n81x^2-4

m,xz-yz-x^2+2xy-y^2

p,x^2+8x+15

k,x^2-x-12

bài 5 tìm x biết

a 2x(x-5)-x(3+2x)=26

b, 5x(x-1)=x-1

c,2(x+

d, (2x-3)^2-(x+5)^5=0

e,3x^2-48x=0

f, x^3+c

bài 6 chứng minh rằng biểu thức

A= x (x-6) +10 luôn dương với mọi x,y.

B=x^2-2x+9y^2-6y+3 luôn dươn với mọi x,y.

bài 7: tìm giá trị nhỏ nhất của biểu thức a,b,c và giá trị lớn nhất của biểu thức D,E.

A = x^2 - 4x +1

B=3x^2+4x+11

C = (x-1)(x+3)(x+2)(x+6)

D= 55-8x-x^2

E= 4x-x^2 +1

Bài9: cho phân thức sau :

____

8 tháng 10 2018

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)

\(\Rightarrow\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}\)

\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}\)

\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n}-\sqrt{n+1}}{-1}\)

\(=\frac{1-\sqrt{n+1}}{-1}=\sqrt{n+1}-1\ge2014\)

                                  \(\Leftrightarrow\sqrt{n+1}\ge2015\)

                                 \(\Leftrightarrow n+1=2015^2=4060225\)

\(V~~n=4060224\)

26 tháng 7 2017

b/ \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\)

\(=\sqrt{n+1}-1\)

Câu a quy đồng từ từ từ phải qua trái là ra

15 tháng 9 2019

Tại \(n\in N,n\ge1\) có:

\(\frac{1}{\left(n+3\right)\sqrt{n}+n\sqrt{n+3}}=\frac{1}{\sqrt{n\left(n+3\right)}\left(\sqrt{n+3}+\sqrt{n}\right)}=\frac{\sqrt{n+3}-\sqrt{n}}{\sqrt{n\left(n+3\right)}\left(n+3-n\right)}=\frac{\sqrt{n+3}-\sqrt{n}}{3\sqrt{n\left(n+3\right)}}\)

=\(\frac{1}{3}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\)

=> \(\frac{1}{\left(n+3\right)\sqrt{n}+n\sqrt{n+3}}=\frac{1}{3}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\) (1)

Áp dụng (1) vào Q có:

Q=\(\frac{1}{3}\left(1-\frac{1}{\sqrt{4}}\right)+\frac{1}{3}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{3}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{6}}\right)+...+\frac{1}{3}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\)=\(\frac{1}{3}\left(1-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{6}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+3}}\right)\)

=\(\frac{1}{3}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{4}}-\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{6}}-..-\frac{1}{\sqrt{n+3}}\right)\)

=\(\frac{1}{3}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n+2}}-\frac{1}{\sqrt{n+3}}\right)\)

@Vũ Minh Tuấn @Lê Thị Thục Hiền @Băng Băng 2k6

9 tháng 10 2016

Bài 1:

Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

xong bn áp dụng lên trên lm tiếp

9 tháng 10 2016

Bài 3:

theo bđt cô si ta có:

\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)

=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)                         (1)

Tương tự ta có :

\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)                            (2)

\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)                               (3)

Cộng vế vs vế (1)(2)(3) ta có:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)

26 tháng 2 2022

 Xét số hạng tổng quát ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài tập, ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)

12 tháng 12 2017

\(\hept{\begin{cases}\frac{2}{2\sqrt{n}}< \frac{2}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\\\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\end{cases}}\)

Từ đây ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\left(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+...+\sqrt{n}-\sqrt{n-1}\right)\)

\(=2\left(\sqrt{n}-0\right)=2\sqrt{n}\)

Tương tự ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)\)

\(=2\left(\sqrt{n+1}-1\right)>\sqrt{n}\)

12 tháng 12 2017

Gọi \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}=A\)là A

Có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{n}}\)

=> \(A>n.\frac{1}{\sqrt{n}}=\sqrt{n}\)(1)

Ta có: \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=2\left(\sqrt{n}+\sqrt{n-1}\right)\)

=> \(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Khi đó: \(\frac{1}{\sqrt{1}}< 2\left(\sqrt{1}-\sqrt{0}\right)\)

\(\frac{1}{\sqrt{2}}< 2\left(\sqrt{2}-\sqrt{1}\right)\)

...

\(\frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

=> \(A< 2\left(\sqrt{n}-\sqrt{n-1}+...+\sqrt{1}\right)\)

=> \(A< 2\sqrt{n}\)(2)

Từ (1) và (2) => \(\sqrt{n}< A< 2\sqrt{n}\)

30 tháng 11 2016

Bài này trên gg có

13 tháng 5 2023

Ta có: \sqrt[{k + 1}]{{\frac{{k + 1}}{k}}} > 1,\left( {k = \overline {1,n} } \right)

Áp dụng bất đẳng thức Cauchy cho k + 1 số ta có: 

\begin{matrix}
 \sqrt[{k + 1}]{{\dfrac{{k + 1}}{k}}} = \sqrt[{k + 1}]{{\dfrac{{1 + 1 + .... + 1}}{k}\dfrac{{k + 1}}{k}}} < \dfrac{{1 + 1 + ... + 1 + \dfrac{{k + 1}}{k}}}{{k + 1}} = \dfrac{k}{{k + 1}} + \dfrac{1}{k} = 1 + \dfrac{1}{{k\left( {k + 1} \right)}} \hfill \\
 \Rightarrow 1 < \sqrt[{k + 1}]{{\dfrac{{k + 1}}{k}}} < 1 + \left( {\dfrac{1}{k} - \dfrac{1}{{k + 1}}} \right) \hfill \\ 
\end{matrix}

Lần lượt cho k = 1, 2, 3, ... rồi cộng lại ta được 

n < \sqrt 2 + \sqrt[3]{{\frac{3}{2}}} + ... + \sqrt[{n + 1}]{{\frac{{n + 1}}{n}}} < n + 1 - \frac{1}{n} < n + 1 
 \Rightarrow \left| \alpha \right| = n