K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2022

\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

3n-11-12-23-34-46-612-12
nloại01loạiloạiloạiloại-1loạiloạiloạiloại

 

c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

n-31-13-39-9
n426012-6

 

27 tháng 2 2023

Có đúng không

 

16 tháng 4 2022

Mình mới học lớp 5 thôi nha

Mong bạn thông cảm

 

12 tháng 6 2022

 👌🏻

20 tháng 6 2019

\(a,\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}\)

\(=3-\frac{5}{n+1}\)

\(\text{Để }\frac{3n-2}{n+1}\in Z\)

\(\Rightarrow3-\frac{5}{n+1}\in Z\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)

\(\Rightarrow n=\left\{0;4;-2;-6\right\}\)

DD
11 tháng 3 2021

\(B\inℤ\Rightarrow2B\inℤ\Rightarrow\frac{2n}{2n-1}=\frac{2n-1+1}{2n-1}=1+\frac{1}{2n-1}\inℤ\)

\(\Rightarrow\frac{1}{2n-1}\inℤ\Leftrightarrow2n-1\in\left\{-1,1\right\}\Leftrightarrow n\in\left\{0,1\right\}\).

Thử lại ta đều thấy thỏa mãn. 

11 tháng 3 2021

\(\text{Để B nguyên thì }:n⋮2n-1\)

\(\text{vì}:n⋮2n-1\)\(\text{nên}:2n+0⋮2n-1\)

\(\left(2n-1\right)+1⋮2n-1\)

Vì \(\left(2n-1\right)⋮2n-1\)

nên \(1⋮2n-1\)

suy ra \(2n-1\inƯ\left(1\right)=\pm1\)

với 2n-1=1 hoặc 2n-1=-1

   2n=2                 2n=0

    n=1                   n=0

vậy n=0 hoặc n=1 thì thỏa mãn điều kiện trên

26 tháng 1 2019

\(A=\frac{2n+7}{3n-1}\)

\(\Rightarrow3A=\frac{6n+14}{3n-1}=\frac{2\left(3n-1\right)+16}{3n-1}=2+\frac{16}{3n-1}\)

Để n là số nguyên 

\(\Rightarrow16⋮3n-1\)

\(\Rightarrow3n-1\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

Xét bảng

3n-11-12-24-48-816-16
nloại01loạiloại-13loạiloại-5

Vậy................................

p/s : ko chắc nha 

20 tháng 6 2019

để\(\frac{2n+1}{3n+2}\)có giá trị nguyên => \(2n+1⋮3n+2=>3\left(2n+1\right)⋮3n+2\)
                                                                                         \(< =>6n+3⋮3n+2\)(1)
   
                          Ta lại có : \(3n+2⋮3n+2\)với mọi n \(=>6n+4⋮3n+2\)(2)
                           Từ (1) và (2) suy ra \(\left(6n+4\right)-\left(6n+3\right)⋮3n+2\)<=> \(1⋮3n+2\)
                           Vì n là STN,do đó \(3n+2\inƯ\left(1\right)=\left(1\right)\)
                           Với 3n+2=1=>n=\(-\frac{1}{3}\)(loại)
                          Vậy k có số tự nhiên n thỏa mãn,các bài còn lại làm tương tự 
                           

20 tháng 6 2019

ai  trả lời hết mik cảm ơn

cần gấp ạ

\(A=\frac{3n-2}{n+1}=\frac{3x+3-5}{n+1}=\frac{3.\left(x+1\right)-5}{n+1}=3+\frac{-5}{n+1}\)(ĐKXĐ:\(n\ne-1\))

Đề A nguyên thì \(3+\frac{-5}{n+1}\)nguyên

Có \(3\in Z\)nên để \(3+\frac{-5}{n+1}\)nguyên thì \(\frac{-5}{n+1}\)nguyên

Để \(\frac{-5}{n+1}\)nguyên thì \(-5⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(-5\right)\)

\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)

\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\)(Đều thỏa mãn ĐK)

Vậy......