Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 2n+8=2(n-3)+13
=> 13 chia hết cho n-3
=> n-3\(\in\)Ư(13)={-13;-1;1;13}
ta có bảng
n-3 | -13 | -1 | 1 | 3 |
n | -10 | 2 | 4 | 6 |
b) Ta có 3n+11=3(n+5)-4
=> 4 chia hết cho n+5
=> n+5\(\in\)Ư(4)={-4;-2;-1;1;2;4}
ta có bảng
n+5 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -9 | -7 | -6 | -4 | -3 | -1 |
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
Đặt \(A=11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
\(A=11\cdot25^n+8^n\cdot4+8^n\cdot2\)
\(A=17\cdot25^2-6\left(25^n-8^n\right)\)
\(A=17\cdot25^n-6\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(A=17\cdot25^n-17\cdot6\cdot\left(25^{n-1}+25^{n-2}\cdot8+..........+8^{n-2}\cdot25+8^{n-1}\right)\)\(\Rightarrow A⋮17\)
a: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2\right\}\)
b: B chiahết cho 9
nên \(x+y+6+2+4+2+7\in B\left(9\right)\)
\(\Leftrightarrow x+y+21\in B\left(9\right)\)
\(\Leftrightarrow x+y\in\left\{6;15\right\}\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(2;4\right);\left(4;2\right);\left(3;3\right);\left(1;15\right);...;\left(14;1\right)\right\}\)
Vì B chia hết cho 11
và \(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(2;4\right);\left(4;2\right);\left(3;3\right);\left(1;15\right);...;\left(14;1\right)\right\}\)
nên x=2 va y=4
a: \(\Leftrightarrow4n-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;1\right\}\)
b: \(\Leftrightarrow6n+10⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{2;1;11;-8\right\}\)
2: \(\Leftrightarrow15n-5⋮5n+2\)
\(\Leftrightarrow15n+6-11⋮5n+2\)
\(\Leftrightarrow5n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-\dfrac{1}{5};-\dfrac{3}{5};\dfrac{9}{5};-\dfrac{13}{5}\right\}\)
3: \(\Leftrightarrow n+5\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-4;-6;2;-12\right\}\)
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5