Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
Để phân số có giá trị nguyên thì :
4n+5 chia hết 2n−1
⇔2.(2n−1)+7 chia hết 2n−1⇔
⇔7 chia hết 2n−1
⇔2n−1∈Ư(7)
⇔2n−1∈{−1,1,−7,7−1,1,−7,7}
⇔n∈{0,1,−3,40,1,−3,4}
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
\(\text{#}\)\(m.ánh\)
\(a=\dfrac{4n+1}{2n-1}\)\(\text{∈ Z ⇔ 4 n + 1 ⋮ 2 n − 1 ( n ∈ Z )}\)
Vì \(2 n − 1 ⋮ 2 n − 1\)
\(⇒ 2 . ( 2 n − 1 ) ⋮ 2 n − 1\)
\(⇒ 4 n − 2 ⋮ 2 n − 1\)
\(⇒ 4 n + 1 − 4 n − 2 ⋮ 2 n − 1\)
\(⇒ 3 ⋮ 2 n − 1 hay 2 n − 1 ∈ Ư ( 3 ) = ( 1 ; 3 ; − 1 ; − 3 )\)
Lập bảng gt :
\(2n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(1\) | \(2\) | \(0\) | \(-1\) |
\(TMDK \) | \(TMDK \) | \(TMDK \) | \(TMDK \) |
Vậy \(n\text{∈}\left\{1;2;0;-1\right\}\)
a) \(A=\frac{3n-11}{n-4}=\frac{3.\left(n-4\right)+1}{n-4}=3+\frac{1}{n-4}\)
Để A có giá trị là số nguyên \(\Rightarrow\frac{1}{n-4}\in Z\Rightarrow n-4\inƯ\left(1\right)\)
\(\Rightarrow\orbr{\begin{cases}n-4=1\\n-4=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=5\\n=3\end{cases}}}\)
Vậy n=3; n=5
b) \(B=\frac{4n+1}{2n-1}=\frac{2.\left(2n-1\right)+3}{2n-1}=2+\frac{3}{2n-1}\)
Để B có giá trị là số nguyên \(\Rightarrow\frac{3}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(3\right)\)
Do đó ta có bảng:
2n-1 | -3 | -1 | 1 | 3 |
n | -1 | 0 | 1 | 2 |
Vậy n=-1; n=0; n=1; n=2
a) Để A đạt giá trị nguyên
<=> 3n - 11 chia hết cho n - 4
=> ( 3n - 12 ) + 1 chia hết cho n - 4
=> 3(n-4) + 1 chia hết cho n - 4
=> 1 chia hết cho n - 4
=> n - 4 thuộc Ư(1)={-1;1}
=> n thuộc { 3;5}
b) Để B đạt giá trị nguyên
<=> 4n + 1 chia hết cho 2n - 1
=> ( 4n - 2 ) + 3 chia hết cho 2n-1
=> 2(2n-1)+3 chia hết cho 2n-1
=> 3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(3) = { -3 ; -1 ; 1; 3 }
=> n thuộc { -1 ; 2 }
để \(\frac{4n\text{+}5}{2n-1}\)là số nguyên \(\Rightarrow\)4n+5\(⋮\)2n-1
\(\Rightarrow\)(4n-2)+7\(⋮\)2n-1
Vì 4n-2\(⋮\)2n-1\(\Rightarrow\)7\(⋮\)2n-1\(\Rightarrow\)2n-1 là Ư(7) \(\in\){\(\pm\)1;\(\pm\)7}
Ta có bảng sau
Vậy n\(\in\){0;1;4;-3}