K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

3n^3 - 5n^2 + 3n -5 = 3n(n^2+1) - 5(n^2+1) = (n^2+1)(3n-5)

Do biểu thức là số nguyên tố nên n^2 +1 hoặc 3n-5 bằng 1 số còn lại khác 1

TH1 : n^2 + 1 = 1 => n = 0. Thay vào bt có giá trị là -5 ( vô lí do số nguyên tố phải là số > 1 )

TH2 : 3n - 5 = 1 => n = 2 => Thỏa mãn

Vậy bt trên là snt khi và chỉ khi n = 2 và bt bằng 5

20 tháng 7 2018

cam on nha

AH
Akai Haruma
Giáo viên
2 tháng 10 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

8 tháng 10 2017

\(5n^3-9n^2+15n-27=0\)

\(=\left(5n-9\right)\left(n^2+3\right)\)Vì \(n^2+3>1\)Nên \(5n-9=1\)( vì nếu là số nguyên tố thì chỉ có 2 ước số là 1 và chính nó )

Vậy 5n = 10 => n = 2 

Với n = 2 ta có :

\(5n^3-9n^2+15n-27=7\)( nhận )

Nếu không tin bạn cứ tra bảng số nguyên tố đảm bảo có số 7 

19 tháng 12 2016

ldigh;df

Để P là số nguyên thì \(3x^3-5x^2+9x-15-1⋮3x-5\)

\(\Rightarrow3x-5\in\left\{1;-1\right\}\)

=>x=2(vì x là số nguyên)

6 tháng 9 2019

ta có : n(n+5)−(n−3)(n+2)=n^2+5n−(n^2+2n−3n−6)

=n^2+5n−n^2−2n+3n+6=6n+6=6(n+1)⋮6

⇔6(n+1)⇔6(n+1) chia hết cho 6 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2)chia hết cho 6 với mọi n là số nguyên (đpcm)

14 tháng 12 2018

Phân thức xác định

\(\Leftrightarrow2x^2-2\ne0\)

\(\Leftrightarrow2\left(x^2-1\right)\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

Vậy phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

14 tháng 12 2018

Đặt \(A=\frac{4x-4}{2x^2-2}=\frac{4\left(x-1\right)}{2\left(x^2-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2}{x+1}\)

Thay x=-2 vào A ta có: \(A=\frac{2}{-2+1}=\frac{2}{-1}=-2\)

Vậy \(A=-2\)tại x=-2

Ta có: \(x\in Z\Rightarrow x+1\in Z\)

\(A\in Z\Leftrightarrow\left(x+1\right)\in\text{Ư}\left(2\right)=\left\{\pm1;\pm2\right\}\)

đến đây b tự làm nhé~